wood construction: column design
Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations
Effect of Length (revisited)

- **long & slender**
- **short & stubby**
Critical Stresses (revisited)

• when a column gets stubby, crushing will limit the load
• real world has loads with eccentricity
Bracing (revisited)

- **bracing affects shape of buckle in one direction**
- **both should be checked!**
Wood Columns

- slenderness ratio = L/d_{\min}
 - $d_1 =$ smallest dimension
 - $l_e/d \leq 50$ (max)
 - $f_c = \frac{P}{A} \leq F'_c$
 - where F'_c is the allowable compressive strength parallel to the grain
 - bracing common
 - posts, round, built-up
Allowable Wood Stress

\[F'_c = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right) \]

- where:
 - \(F_c \): compressive strength parallel to grain
 - \(C_D \): load duration factor
 - \(C_M \): wet service factor (1.0 dry)
 - \(C_t \): temperature factor
 - \(C_F \): size factor
 - \(C_p \): column stability factor

(Fig. 9.23)
Strength Factors

• wood properties and load duration, C_D
 – short duration
 • higher loads
 – normal duration
 • > 10 years

• stability, C_p
 – combination curve - tables

$$F' = F^* C_p = (F_c C_D) C_p$$

http://www.swst.org/teach/set2/struct1.html
C_p Charts – Chapter 9, pg 478

Table 9.3 Column Stability Factor C_p

<table>
<thead>
<tr>
<th>F_{CE}/F_{C*}</th>
<th>Sawed</th>
<th>Glu-Lam</th>
<th>F_{CE}/Sawed</th>
<th>F_{CE}/Glu-Lam</th>
<th>F_{CE}/Sawed</th>
<th>F_{CE}/Glu-Lam</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
<td>0.40</td>
<td>0.360</td>
<td>0.377</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.010</td>
<td>0.010</td>
<td>0.41</td>
<td>0.367</td>
<td>0.386</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>0.020</td>
<td>0.020</td>
<td>0.42</td>
<td>0.375</td>
<td>0.394</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>0.030</td>
<td>0.030</td>
<td>0.43</td>
<td>0.383</td>
<td>0.403</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>0.040</td>
<td>0.040</td>
<td>0.44</td>
<td>0.390</td>
<td>0.411</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.049</td>
<td>0.050</td>
<td>0.45</td>
<td>0.398</td>
<td>0.420</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td>0.059</td>
<td>0.060</td>
<td>0.46</td>
<td>0.405</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>0.069</td>
<td>0.069</td>
<td>0.47</td>
<td>0.412</td>
<td>0.436</td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>0.079</td>
<td>0.079</td>
<td>0.48</td>
<td>0.419</td>
<td>0.444</td>
<td></td>
</tr>
<tr>
<td>0.09</td>
<td>0.088</td>
<td>0.089</td>
<td>0.49</td>
<td>0.427</td>
<td>0.453</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>0.098</td>
<td>0.099</td>
<td>0.50</td>
<td>0.434</td>
<td>0.461</td>
<td></td>
</tr>
<tr>
<td>0.11</td>
<td>0.107</td>
<td>0.109</td>
<td>0.51</td>
<td>0.441</td>
<td>0.469</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>0.117</td>
<td>0.118</td>
<td>0.52</td>
<td>0.448</td>
<td>0.477</td>
<td></td>
</tr>
<tr>
<td>0.13</td>
<td>0.126</td>
<td>0.128</td>
<td>0.53</td>
<td>0.454</td>
<td>0.484</td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td>0.136</td>
<td>0.138</td>
<td>0.54</td>
<td>0.461</td>
<td>0.492</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>0.145</td>
<td>0.147</td>
<td>0.55</td>
<td>0.468</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td>0.154</td>
<td>0.157</td>
<td>0.56</td>
<td>0.474</td>
<td>0.508</td>
<td></td>
</tr>
<tr>
<td>0.17</td>
<td>0.164</td>
<td>0.167</td>
<td>0.57</td>
<td>0.481</td>
<td>0.515</td>
<td></td>
</tr>
<tr>
<td>0.18</td>
<td>0.173</td>
<td>0.176</td>
<td>0.58</td>
<td>0.487</td>
<td>0.523</td>
<td></td>
</tr>
<tr>
<td>0.19</td>
<td>0.182</td>
<td>0.186</td>
<td>0.59</td>
<td>0.494</td>
<td>0.530</td>
<td></td>
</tr>
</tbody>
</table>

\[
F_{CE} = \frac{0.822 E_{min}'}{\left(\frac{d}{l}\right)^2} (c = 0.8 \text{ sawn}, c = 0.9 \text{ glulam})
\]
Table 12 Allowable Column Loads—Selected Species/Sizes. (Continued)

<table>
<thead>
<tr>
<th>Eff.</th>
<th>l/d</th>
<th>(l/d)sq</th>
<th>Fce</th>
<th>Fc/Fc'</th>
<th>Cp</th>
<th>Fc(ksi)</th>
<th>Pa (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8×8</td>
</tr>
<tr>
<td>Col.</td>
<td>l/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56.25</td>
</tr>
<tr>
<td>Len(ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8×8</td>
</tr>
<tr>
<td>12</td>
<td>19.2</td>
<td>368.64</td>
<td>1302.08</td>
<td>1.30</td>
<td>1.13</td>
<td>.7731</td>
<td>.7315</td>
</tr>
<tr>
<td>13</td>
<td>20.8</td>
<td>432.64</td>
<td>1109.47</td>
<td>1.11</td>
<td>0.96</td>
<td>.7258</td>
<td>.6767</td>
</tr>
<tr>
<td>14</td>
<td>22.4</td>
<td>501.76</td>
<td>956.63</td>
<td>0.96</td>
<td>0.83</td>
<td>.6767</td>
<td>.6235</td>
</tr>
<tr>
<td>15</td>
<td>24.0</td>
<td>576.00</td>
<td>833.33</td>
<td>0.83</td>
<td>0.72</td>
<td>.6235</td>
<td>.5694</td>
</tr>
<tr>
<td>16</td>
<td>25.6</td>
<td>655.36</td>
<td>732.42</td>
<td>0.73</td>
<td>0.64</td>
<td>.5747</td>
<td>.5244</td>
</tr>
<tr>
<td>17</td>
<td>27.2</td>
<td>739.84</td>
<td>648.79</td>
<td>0.65</td>
<td>0.56</td>
<td>.5303</td>
<td>.4744</td>
</tr>
<tr>
<td>18</td>
<td>28.8</td>
<td>829.44</td>
<td>578.70</td>
<td>0.58</td>
<td>0.50</td>
<td>.4873</td>
<td>.4336</td>
</tr>
<tr>
<td>19</td>
<td>30.4</td>
<td>924.16</td>
<td>519.39</td>
<td>0.52</td>
<td>0.45</td>
<td>.4475</td>
<td>.3975</td>
</tr>
<tr>
<td>20</td>
<td>32.0</td>
<td>1024.00</td>
<td>468.75</td>
<td>0.47</td>
<td>0.41</td>
<td>.4122</td>
<td>.3673</td>
</tr>
<tr>
<td>21</td>
<td>33.6</td>
<td>1128.96</td>
<td>425.17</td>
<td>0.43</td>
<td>0.37</td>
<td>.3826</td>
<td>.3360</td>
</tr>
<tr>
<td>22</td>
<td>35.2</td>
<td>1239.04</td>
<td>387.40</td>
<td>0.39</td>
<td>0.34</td>
<td>.3518</td>
<td>.3118</td>
</tr>
<tr>
<td>23</td>
<td>36.8</td>
<td>1354.24</td>
<td>354.44</td>
<td>0.35</td>
<td>0.31</td>
<td>.3199</td>
<td>.2869</td>
</tr>
<tr>
<td>24</td>
<td>38.4</td>
<td>1474.56</td>
<td>325.52</td>
<td>0.33</td>
<td>0.28</td>
<td>.3035</td>
<td>.2615</td>
</tr>
<tr>
<td>25</td>
<td>40.0</td>
<td>1600.00</td>
<td>300.00</td>
<td>0.30</td>
<td>0.26</td>
<td>.2785</td>
<td>.2442</td>
</tr>
<tr>
<td>26</td>
<td>41.6</td>
<td>1730.56</td>
<td>277.37</td>
<td>0.28</td>
<td>0.24</td>
<td>.2615</td>
<td>.2267</td>
</tr>
<tr>
<td>27</td>
<td>43.2</td>
<td>1866.24</td>
<td>257.20</td>
<td>0.26</td>
<td>0.22</td>
<td>.2442</td>
<td>.2090</td>
</tr>
<tr>
<td>28</td>
<td>44.8</td>
<td>2007.04</td>
<td>239.16</td>
<td>0.24</td>
<td>0.21</td>
<td>.2267</td>
<td>.2000</td>
</tr>
<tr>
<td>29</td>
<td>46.4</td>
<td>2152.96</td>
<td>222.95</td>
<td>0.22</td>
<td>0.19</td>
<td>.2090</td>
<td>.1819</td>
</tr>
<tr>
<td>30</td>
<td>48.0</td>
<td>2314.00</td>
<td>208.33</td>
<td>0.21</td>
<td>0.18</td>
<td>.2000</td>
<td>.1728</td>
</tr>
<tr>
<td>DF-L No.1</td>
<td>(P&T)</td>
<td>Fc = 1000</td>
<td>E = 1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF-L No.1 & Btr</td>
<td>Dim.Lum</td>
<td>Fc = 1500</td>
<td>E = 1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wood Columns 10 Architectural Structures Su2018abn
Lecture 13 ARCH 331
Procedure for Analysis

1. calculate L_e/d_{min}
 - KL/d each axis, choose largest

2. obtain F'_c
 - compute
 $$F_{cE} = \frac{0.822E'_\text{min}}{(l_e/d)^2} = \left(\frac{K_{CE}E}{(l_e/d)^2}\right)$$

 - $(K_{CE} = 0.3 \text{ sawn})$
 - $(K_{CE} = 0.418 \text{ glu-lam})$

 - $E'_\text{min} = E_{\text{min}}(C_M)(C_t)(C_T)(C_i)$

3. compute $F'_c \approx F_c C_D$

4. calculate F_{cE}/F'_c and get C_p (Table 9.3)

5. calculate $F'_c = F'_c C_p$
Procedure for Analysis (cont’d)

6. **compute** \(P_{\text{allowable}} = F'_c \cdot A \)
 - or find \(f_{\text{actual}} = \frac{P}{A} \)

7. **is** \(P \leq P_{\text{allowable}} \) ? (or \(f_{\text{actual}} \leq F'_c \) ?)
 - yes: OK
 - no: overstressed & no good
Procedure for Design

1. guess a size (pick a section)

2. calculate L_e/d_{min}
 - KL/d each axis, choose largest

3. obtain F'_c
 - compute
 $$F_{cE} = \frac{0.822E'_\text{min}}{(l_e/d)^2} = \frac{K_{cE}E}{(l_e/d)^2}$$
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam
 - $E'_\text{min} = E_\text{min}(C_M)(C_t)(C_T)(C_i)$

4. compute $F'_c \approx F_cC_D$

5. calculate F_{cE}/F'_c and get C_p (Table 9.3)
Procedure for Design (cont’d)

6. compute \(F'_c = F^*_c C_p \)
7. compute \(P_{\text{allowable}} = F'_c \cdot A \)
 • or find \(f_{\text{actual}} = P/A \)
8. is \(P \leq P_{\text{allowable}} \)? (or \(f_{\text{actual}} \leq F'_c \)?)
 • yes: OK
 • no: pick a bigger section and go back to step 2.
Timber Construction by Code

- **light-frame**
 - light loads
 - 2x’s
 - floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - **stud** or load-bearing masonry walls
 - limited to around 3 stories – fire safety
Design of Columns with Bending

- satisfy
 - strength
 - stability
- pick
 - section

(a) Framed beam (shear) connection.
\(e = \text{Eccentricity}; \ M = P \times e \)

(b) Moment connection (rigid frame).
\(M = \text{Moment due to beam bending} \)

(c) Timber beam–column connection.
\(e = \frac{d}{2} = \text{Eccentricity}; \ M = P \times e \)

(d) Upper chord of a truss—compression plus bending.
\(M = \frac{\omega l^2}{8} \)
Design

• Wood

\[
\left[\frac{f_c}{F_c'} \right]^2 + \frac{f_{bx}}{F_{bx} \left(1 - \frac{f_c}{F_{cEx}} \right)} \leq 1.0
\]

[] term – magnification factor for P-Δ

\(F'_{bx} \) – allowable bending strength
Design Steps Knowing Loads

1. assume limiting stress
 • buckling, axial stress, combined stress
2. solve for r, A or S
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok
Laminated Timber Arches

- two & three hinged arches
- bent to wide range of curves
- bending and compression
- residual stress from laminating, C_c
Laminated Arch Design

- radius of curvature, R, limited by lam thickness, t
 - $R = 100t$ – southern pine & hardwoods
 - $R = 125t$ – softwood
- $r = \text{radius to inside face of laminations}$
- $C_C = 1 - 2000 \left(\frac{t}{r} \right)^2$
- $F'_b = F_b(C_F C_C)$