reinforced concrete construction

Concrete Construction
- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete Materials
- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - aggregate
 - water
Concrete Materials

- reinforcement
 - deformed bars
 - prestressing strand
 - stirrups
 - development length
 - anchorage
 - splices

Concrete Beams

- types
 - reinforced
 - precast
 - prestressed

- shapes
 - rectangular, I
 - T, double T’s, bulb T’s
 - box
 - spandrel

Concrete Materials

- fire resistance
 - most fire-resistive structural material
 - low rate of penetration
 - retains strength if exposure not too long
 - stable to 900 – 1200 °F internally
 - loses 50% after that
 - no toxic fumes
 - cover necessary to protect steel

Concrete Beams

- deformation
 - camber (elastic)
 - hogging
 - sagging
 - shrinkage strain
 - 200-400 x 10^-6
 - about 2-3 years
 - creep strain
 - 2~3 times elastic strain
 - about 2-3 years
Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°
- bearing
 - crushing

Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for failure
 - strength design (LRFD)
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'c

Behavior of Composite Members

- plane sections remain plane
- stress distribution changes

Transformation of Material

- n is the ratio of E’s
 \[n = \frac{E_2}{E_1} \]
- effectively widens a material to get same stress distribution
Stresses in Composite Section

- with a section transformed to one material, new
 \[n = \frac{E_2}{E_1} = \frac{E_{\text{steel}}}{E_{\text{concrete}}} \]
 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by \(n \)

\[f_c = -\frac{M_y}{I_{\text{transformed}}} \]
\[f_s = -\frac{M_{yn}}{I_{\text{transformed}}} \]

Reinforced Concrete Analysis

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent stress block
 - concrete takes no tension
 - steel takes tension
 - force ductile failure

Reinforced Concrete - stress/strain

Location of n.a.

- ignore concrete below n.a.
- transform steel
- same area moments, solve for \(x \)

\[bx \cdot \frac{x}{2} - nA_s (d - x) = 0 \]
T sections

- n.a. equation is different if n.a. below flange

\[
bf \left(x - \frac{hf}{2}\right) + \left(x - hf\right)bw \left(x - hf\right) - nA_s (d - x) = 0
\]

ACI Load Combinations

- 1.4D
- 1.2D + 1.6L + 0.5(L_r or S or R)
- 1.2D + 1.6(L_r or S or R) + (1.0L or 0.5W)
- 1.2D + 1.0W + 1.0L + 0.5(L_r or S or R)
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

*can also use old ACI factors

Reinforcement

- deformed steel bars (rebar)
 - Grade 40, \(F_y = 40\) ksi
 - Grade 60, \(F_y = 60\) ksi - most common
 - Grade 75, \(F_y = 75\) ksi
 - US customary in # of 1/8” \(\phi\)
- longitudinally placed
 - bottom
 - top for compression reinforcement
 - spliced, hooked, terminated...

Reinforced Concrete Design

- stress distribution in bending

\[A_c = 0.85f'_c\]

Wang & Salmon, Chapter 3
Force Equations

- \(C = 0.85 \, f' \, c \, ba \)
- \(T = A_s \, f_y \)

where
- \(f' \, c \) = concrete compressive strength
- \(a \) = height of stress block
- \(\beta_1 \) = factor based on \(f' \, c \)
- \(c \) = location to the n.a.
- \(b \) = width of stress block
- \(f_y \) = steel yield strength
- \(A_s \) = area of steel reinforcement

Over and Under-reinforcement

- **over-reinforced**
 - steel won’t yield

- **under-reinforced**
 - steel will yield

reinforcement ratio
- \(\rho = \frac{A_s}{bd} \)
 - use as a design estimate to find \(A_s, b, d \)
 - max \(\rho \) is found with \(\varepsilon_{steel} \geq 0.004 \) (not \(\rho_{bal} \))
 - *with \(\varepsilon_{steel} \geq 0.005, \phi = 0.9 \)

Equilibrium

- \(T = C \)
- \(M_n = T(d - a/2) \)
 - \(d \) = depth to the steel n.a.

with \(A_s \)
- \(a = A_s \, f_y \)
- \(\phi = 0.65 + (\varepsilon_y - \varepsilon_s) \frac{0.25}{(0.005 - \varepsilon_y)} \geq 0.65 \)

- \(M_u \leq \phi M_n \)
 - \(\phi = 0.9 \) for flexure*
 - \(\phi M_n = \phi T(d - a/2) = A_s \, f_y \, (d - a/2) \)

\(A_s \) for a given Section

- several methods
 - guess \(a \) and iterate
 1. guess \(a \) (less than n.a.)
 2. \(A_s = \frac{0.85 \, f' \, c \, ba}{f_y} \)
 3. solve for \(a \) from \(M_u = \phi A_s \, f_y \, \left(d - \frac{a}{2}\right)\)
 \[
 a = 2 \left(d - \frac{M_u}{\phi A_s \, f_y} \right)
 \]
 4. repeat from 2. until \(a \) from 3. matches \(a \) in 2.
A_s For Given Section (cont)

- chart method
 - Wang & Salmon
 - Fig. 3.8.1 R_n vs. ρ
 1. calculate $R_n = \frac{M_n}{bd^2}$
 2. find curve for f'_c and f_y to get ρ
 3. calculate A_s and a
- simplify by setting $h = 1.1d$

Shear in Concrete Beams

- flexure combines with shear to form diagonal cracks

Shear in Concrete Beams

- horizontal reinforcement doesn’t help
- stirrups = vertical reinforcement

ACI Shear Values

- V_u is at distance d from face of support
- shear capacity: $V_c = \nu_c \times b_w d$
 - where b_w means thickness of web at n.a.
- shear stress (beams)
 - $\nu_c = 2\lambda \sqrt{f'_c}$
 - $\phi = 0.75$ for shear
 - f'_c is in psi
 - $\phi V_c = \phi 2\lambda \sqrt{f'_c} b_w d$
 - λ for lightweight materials
- shear strength: $V_u \leq \phi V_c + \phi V_s$
 - V_s is strength from stirrup reinforcement

Stirrup Reinforcement

- shear capacity:
 - $V_s = \frac{A_v f_y d}{s} \leq 8\sqrt{f'_c b_w d}$
 - A_v = area in all legs of stirrups
 - s = spacing of stirrup
- may need stirrups when concrete has enough strength!
Required Stirrup Reinforcement

- spacing limits

<table>
<thead>
<tr>
<th>Stirrup spacing, a</th>
<th>Required area of stirrups, A_{st}</th>
<th>Recommended Minimum l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\psi_V > V_u$; $\psi_V = 0.75 \psi_{V, max}$</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>$\psi_V = \psi_V$</td>
<td>--</td>
</tr>
</tbody>
</table>

Concrete Deflections

- elastic range
 - I transformed
 - E_c (with f_c' in psi)
 - normal weight concrete (~ 145 lb/ft³)
 \[
 E_c = 57,000 \sqrt{f_c'}
 \]
 - concrete between 90 and 155 lb/ft³
 \[
 E_c = \frac{w_{c, f}}{33.5} \sqrt{f_c'}
 \]
- cracked
 - I cracked
 - E adjusted

Deflection Limits

- relate to whether or not beam supports or is attached to a damageable non-structural element
- need to check service live load and long term deflection against these

<table>
<thead>
<tr>
<th>Deflection Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/180</td>
<td>roof systems (typical) – live</td>
</tr>
<tr>
<td>L/240</td>
<td>floor systems (typical) – live + long term</td>
</tr>
<tr>
<td>L/360</td>
<td>supporting plaster – live</td>
</tr>
<tr>
<td>L/480</td>
<td>supporting masonry – live + long term</td>
</tr>
</tbody>
</table>

Prestressed Concrete

- impose a longitudinal force on a member in order to withstand more loading until the member reaches a tensile limit
Prestressed Concrete

- pretensioned
 - reinforcement bonded
- post-tensioned
 - bonded or unbonded
 - end bearing
- precast
 - concrete premade in a position other than its final position in the structure

Prestressed Concrete

- high strength tendons
 - grade 250
 - grade 270

\[
\begin{align*}
\text{Axial prestress (e=0)}: \\
& f' = \frac{P}{A} - \frac{M_c}{I_g} \\
& f_b = \frac{P}{A} + \frac{M_c}{I_g} \\
& c - \text{distance to fiber} \\
& I_g - \text{gross cross section inertia}
\end{align*}
\]

\[
\begin{align*}
\text{Axial prestress (e\neq 0)}: \\
& f' = \frac{P}{A} - \frac{P \cdot f_c}{A} - \frac{M_c}{I_g} \\
& f_b = \frac{P}{A} + \frac{P \cdot f_c}{A} + \frac{M_c}{I_g} \\
& (\text{remember} \quad f = \frac{f_b}{I_g})
\end{align*}
\]
Prestressed Concrete

![Diagram of Prestressed Concrete](image)

Composite Beams
- concrete
 - in compression
- steel
 - in tension
- shear studs

Continuous Beams
- reduced size
- reduced moments
- moments can reverse with loading patterns
- need top & bottom reinforcement
- sensitive to settlement
Concrete Columns

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (4 bars minimum)

Concrete Columns

- effective length in monolithic casts must be found with respect to stiffness of joint
- not slender when
 \[
 \frac{kL_i}{r} < 22
 \]
 \(r \) not braced
Concrete Columns

- \(P_o \) – no bending
 \[
 P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st}
 \]
- \(\phi_c = 0.65 \) for ties with \(P_n = 0.8P_o \)
- \(\phi_c = 0.70 \) for spirals with \(P_n = 0.85P_o \)
- \(P_u \leq \phi_c P_n \)
- nominal axial capacity:
 -presumes steel yields
 -concrete at ultimate stress

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection \((P-\Delta)\)

Columns with Bending

- for ultimate strength behavior, ultimate strains can’t be exceeded
 -concrete 0.003
 -steel \(\frac{f_y}{E_s} \)
- \(P \) reduces with \(M \)

Columns with Bending

- need to consider combined stresses
 \[
 \frac{P_n}{P_o} + \frac{M_n}{M_o} \leq 1
 \]
- plot interaction diagram
Concrete Floor Systems

- types & spanning direction

Concrete Floor Systems

- one-way and two-way moments
- flexure design as T-beams (+/- M)
- increase of 10% V_c permitted
- slabs need steel
- effective width is
 - $L/4$
 - $b_w + 16t$
 - center-to-center of beams

One-way Joists

- standard stems
- 2.5” to 4.5” slab
- ~30” widths
- reusable forms
One-way Joists
- wide pans
- 5', 6' up
- light loads & long spans
- one-leg stirrups

Two-way Joists
- domed pans
- 3', 4' & 5'

Construction Supervision
- proper placement of all reinforcement
 - welding
 - splices
- mix design
 - slump
- in-situ strength
 - cast cylinders
 - cylinder cores – if needed