De Young Museum Case Study

Created by: Ahmad Alshamali,Francisco Estrada, Matthew Rodriguez, Emanuel Salazar, and Abigail Tacam

Overview

- Structure Aspects:
 - Three-story steel structure
 258,000 square feet
 - Nine-story twisting tower33,000 square feet
 - Cantilever awning system
- Completion date: October 2005
- Location: San Francisco
- Privately funded
 - Total Cost: \$202,000,000
 - o Construction Cost: \$135,000,000

Dimensions

- Longitudinal distance: 482 ft
- Width distance: 247 ft
- Tower height: 148 ft
- Basement height: 19 ft, 6 in
- First floor height: 19 ft
- Second floor height: 26 ft

Building Design

- Architectural design
 - Architects: Jacques Herzog and Pierre De Meuron
- Structural Engineering design:
 - Rutherford & Chekene
- Structural Challenges:
 - Highly irregular geometry
 - Long spans
 - Large floor openings
 - Cantilever and tower
 - Seismic Zone

Museum Features

- 4.7 miles from San Andreas Fault
- Previous structure damaged by Loma Prieta Earthquake in 1989
- Seismic Design:
 - Allows 3 ft of deflection
- Environmental friendly
 - Copper cladding
 - Gardens
 - Tree-ferns at the museum back entrance

Structural System - Main Building

- Composite Steel Braced Frame
- Metal Deck Floors with Concrete Fill
- Steel Joists
- Concrete Bearing/Shear Wall in Basement

Gravity System - Twisting Tower

- Concrete Structural System
- Two Bearing Shear Walls
 - Connected with Post-Tensioned Girders

Steel Framed Roof

Loading

Dead Loads

- Structural Framing
- Cladding
- Flooring
- Mechanical Systems
- etc.

List of Live Loads - Based on ASCE 7-10

LIVE LOAD	WEIGHT, PSF
Offices	50
Café	100
Stores	100
Auditorium	100
Auditorium Seats	60
Light Storage	125
Landscaping (4'-0" soil)	400
Kitchen	150
Gallery	100
Lobby	100
Roof	20

Live Loading Plan

List of Live Loads - Based on ASCE 7-10

LIVE LOAD	WEIGHT, PSF
Offices	50
Café	100
Stores	100
Auditorium	100
Auditorium Seats	60
Light Storage	125
Landscaping (4'-0" soil)	400
Kitchen	150
Gallery	100
Lobby	100
Roof	20

Load Tracing

Load Tracing of Concourse Level

Connections

Main Building Connections

• Simple Shear Tab

Gusset Plates at Braces

Cantilever Connections

Welded Wide Flange Connections

- Gusseted Connections
- Moment Connections
 - Between main and cross trusses

Cantilever System

- Perforated Copper Cladding
- Cantilever members are 62 feet long and 7 feet deep
- System Composed of :
 - Primary Trusses
 - Vierendeel Cross Trusses
 - Hat Trusses
- Wind and Seismic effects governed the design

Structural Analysis - Cantilever System

- Structure modeled using SAP2000 software
- Fixed support connections
- All chords modeled as continuous

Type Of Load	Magnitude (psf)
Dead (Perforated Copper)	2
Roof Live	5
Wind	19.6

Structural Analysis (Gravity)

- A572 GR50 Steel
- Wide Flange Top and Bottom Chords
- Double Angle Braces
- Load combinations considered:
 - 1.4D
 - 1.2D + 1.6Lr + 0.5W
 - o 1.2D + 1.0W + 0.5Lr
 - o 0.9D + 1.0W

Structural Analysis (Gravity)

Axial Diagram

Shear Diagram

Moment Diagram

Lateral System - Wind Response

Lateral System - Main Building Wind Pressure

Wind in the East-West Direction		
Z		Net Pressure
	(ft)	(psf)
Windward	15	14.0
	20	14.9
	25	15.6
	30	16.3
	35	16.8
	40	17.3
	45	17.8

Leeward	All	-10.1
Side	All	-16.1

Doof	0 to h/2	-19.6
	h/2 to h	-19.6
Roof	h to 2h	-12.5
	>2h	-9.0

Wind in the North-South Direction		
	Z	Net Pressure
	(ft)	(psf)
	15	14.0
	20	14.9
	25	15.6
Windward	30	16.3
	35	16.8
	40	17.3
	45	17.8

Leeward	All	-12.5
Side	All	-16.1

Roof	0 to h/2	-19.6
	h/2 to h	-19.6
	h to 2h	-12.5
	> 2h	-9.01

Wind Load Information

Wind Speed	110 mph
Exposure Category	В
Internal Pressure Coefficient, C _{pi}	±0.18
Gust Effect Factor, G	0.85
Mean Roof Height Main Building, $h_{\rm m}$	45 ft
Mean Roof Height Tower, h _t	193 ft
Wind Directionality Factor, K _d	0.85
Velocity Pressure Exposure Coefficient, K _z	Varies
Topographic Factor, K _{zt}	1
Elevation Factor, K _e	1

Lateral System - Tower Wind Pressure

Wind in the East-West Direction		
	Z	Net Pressure
	(ft)	(psf)
	65	21.3
	85	22.5
Windward	105	23.6
	125	24.5
	145	25.3
	165	26.1
	185	26.7
	193	27.0

Wind in the North-South Direction		
	Z	Net Pressure
	(ft)	(psf)
	65	21.3
	85	22.5
	105	23.6
Windward	125	24.5
Villawara	145	25.3
	165	26.1
	185	26.7
	193	27.0

Leeward	All	-19.0
Side	All	-24.3

Leeward	All	-13.2
Side	All	-24.3

Roof	0 to h/2	-33.4
	> h/2	-24.3

Roof	0 to h/2	-33.4
	> h/2	-24.3

Lateral System: Transfer of Seismic Loads

Main Building

- 76 High-Damping Rubber Bearing
- 76 Flat Sliding Bearings
- 24 Fluid Viscous Dampers

Tower

- Coupled shear wall system connected to concrete core
- End-walls function as both bearing and shear walls
- Torsion Box
- Fixed base, seismic joint

Grade Beams

Lateral System - Seismic Response

Main Building

- Sidesway displacement
- Twisting/Rotation
- Overturning

Tower

Ratcheting/Bunny Effect

Lateral System - ASCE 7-10 Seismic Forces

Seismic Loads		
Site Classification	С	

Spectral Response Acceleration Parameters	
S _s	1.5
S ₁	0.6
S _{D1}	0.56
S _{DS}	1.2

Period Parameters		
Approximate Fundamental Period, Ta	0.486 s	
Initial Period, T ₀	0.093 s	
Short Period, T _s	0.467 s	
Long Period, T _L	12 s	

Equivalent Lateral Force		
Importance Factor, I _e	1	
Response Modification Factor, R	5	
Seismic Response Coefficent, C _s	0.0528	
Seismic Weight, W	23010 k	
Base Shear, V	1215 k	

Foundation

- Soil Type
 - 131: Urban Land
 - o 129: Sirdark Sand, 5 50 percent slopes
- Allowable Foundation Pressure, IBC -2,000 psf
- Concrete grade beams with isolation system bearings placed on concrete pedestals at the intersection of a grid
- Lowest base shear, lowest floor acceleration, lowest cost

Grade Beams

Structural Animation

https://www.youtube.com/watch?v=vdtsTbPBeoM

References

- https://www.aisc.org/globalassets/modern-steel/archives/2006/08/2006v08_forever_de_young.pdf
- https://en.wikiarquitectura.com/building/de-young-museum/
- https://deyoung.famsf.org/about/rentals/de-young-floorplans
- https://sites.google.com/site/deyoungmuseumbuidingsystems/
- https://sites.google.com/site/deyoungmuseumbuidingsystems/home/architectural-system
- http://www.ruthchek.com/our_projects/8/9/de-young-museum