

The Architect

Richard Rogers

- Team 4
- Richard + Su Rogers
- Piano + Rogers
- Richard Rogers Partnership

Introduction

Location	Quimper, Brittany, France
Site Areas	8,750 + 30,000 Sqm
Type	Industrial
Building Scope	1 Floor (Mezzanine Level)
The Architect	Richard Rogers Partnership
Structure	Steel
Dates	1979 - 1981

- Awards Constructa-Preis for Overall Excellence in the Field of Architecture 1986
- Concours de Plus Beaux Ouvrages de Construction Metallique1982 - Premier Award for Exceptional Steel Structure, France 1982

Background

- Site
- Newly designed industrial zone
- Near town of Quimper in Brittany

Background

Design Concept

- Minimising intrusion on the landscape
- Dynamic suspension structure
- External structure frees
- Interior roof zone for flexible services distribution

Architecture

FLEETGUARD FACTORY
: Richard Rogers Partnership

Assembly Elements

Assembly Process

- -Column and Beam system
- -Trusses system for lateral stability
- Cable system
 to increase beam span

Details

Wall section

Architectural Structures III PROF. Anne Nichols

Details

suspension rods

Tubular steel hanger and

Column head detail showing forked-end mild-steel suspension rods

Detail of mast connections

Architectural Structures III

PROF. Anne Nichols

Structural System

Vertical Loading

- 1. Point load applied to roof
- 2. Central beam bends in vertical plan
- 3. Surrounding beam bends in horizontal plan
- 4. Steel columns transfer load to footings
- 5. Tension cables serve as secondary load carrier

Structural System

Lateral wind loading

- 1. Lateral wind load hits surrounding frame
- 2. Load resists by central beam in compression
- 3. Surrounding beams in bending
- 4. Lateral forces transfer to footing through triangulation
- 5. Secondary structural elements

Multiframe 4D

• 3D frame copy

Architectural Structures III

PROF. Anne Nichols

Conclusion

- The building is supported by column, beam and cable structure.
- Vertical load: Beam and column + cable structure.
- Lateral load: Truss + beam and column
- It shows the architect's style and clear cable structure.
- Minimalization

Reference

- http://www.richardrogers.co.uk/render.aspx?siteID=1&navIDs=1,4,23,470
- http://courses.arch.hku.hk/precedent/1997/pre08/public html/
- Richard Rogers + Architects, Academy Editions. London
- Richard Rogers team4 Richard+Su Rogers, Piano+Rogers, Richard Rogers Partnership/ complete Works/volume one/ Kenneth Powell
- Richard Rogers 1978-1988/ a+U
- Mutiframe 4D, Academic Version

