Steel construction: bolts, welds & light gages
Connections

• **needed to:**
 – support beams by columns
 – connect truss members
 – splice beams or columns

• **transfer load**

• **subjected to**
 – tension or compression
 – shear
 – bending
Bolts

- **bolted steel connections**
Welds

• welded steel connections
Bolts

- **types**
 - **materials**
 - high strength
 - A307, A325, A490
 - **location of threads**
 - included - N
 - excluded - X
 - **friction or bearing (SC)**
 - always tightened
Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture
Bolts

• rarely fail in bearing
• holes considered 1/8” larger
• shear & tension
 – single shear or tension
 \[R_a \leq \frac{R_n}{\Omega} \]
 \[R_{u} \leq \phi_v R_n \]
 \[\phi_v = 0.75 \]
 – double shear
 \[R_n = F_n A_b \]
 \[R_n = F_n 2 A_b \]
Bolts

Table 7-1 Available Shear Strength of Bolts, kips

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter, d, in.</th>
<th>3/8</th>
<th>3/4</th>
<th>7/8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Bolt Area, in.²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.307</td>
<td>0.442</td>
<td>0.601</td>
<td>0.785</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTM Design.</th>
<th>Thread Cond.</th>
<th>F_s (ksi)</th>
<th>(\phi_F)</th>
<th>F_t (ksi)</th>
<th>(\phi_T)</th>
<th>F_a (ksi)</th>
<th>(\phi_A)</th>
<th>F_w (ksi)</th>
<th>(\phi_W)</th>
<th>F_p (ksi)</th>
<th>(\phi_P)</th>
<th>F_y (ksi)</th>
<th>(\phi_Y)</th>
<th>F_d (ksi)</th>
<th>(\phi_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>LRFD</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>N</td>
<td>27.0</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>34.0</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td>Group B</td>
<td>N</td>
<td>34.0</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>42.0</td>
<td>63.0</td>
<td></td>
</tr>
<tr>
<td>A307</td>
<td></td>
<td>13.5</td>
<td>20.3</td>
<td></td>
</tr>
</tbody>
</table>

Table 7-2 Available Tensile Strength of Bolts, kips

<table>
<thead>
<tr>
<th>Nominal Bolt Diameter, d, in.</th>
<th>1/8</th>
<th>1/4</th>
<th>3/8</th>
<th>1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Bolt Area, in.²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.307</td>
<td>0.442</td>
<td>0.601</td>
<td>0.785</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTM Design.</th>
<th>Thread Cond.</th>
<th>F_s (ksi)</th>
<th>(\phi_F)</th>
<th>F_t (ksi)</th>
<th>(\phi_T)</th>
<th>F_a (ksi)</th>
<th>(\phi_A)</th>
<th>F_w (ksi)</th>
<th>(\phi_W)</th>
<th>F_p (ksi)</th>
<th>(\phi_P)</th>
<th>F_y (ksi)</th>
<th>(\phi_Y)</th>
<th>F_d (ksi)</th>
<th>(\phi_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD</td>
<td>LRFD</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>N</td>
<td>27.0</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>34.0</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td>Group B</td>
<td>N</td>
<td>34.0</td>
<td>51.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>42.0</td>
<td>63.0</td>
<td></td>
</tr>
<tr>
<td>A307</td>
<td></td>
<td>13.5</td>
<td>20.3</td>
<td></td>
</tr>
</tbody>
</table>

| **ASD** | **LRFD** | | | | | | | | | | | | | | |
| Omega (\(\Omega \)) | 2.00 | \(\phi = 0.75 \) | | | | | | | | | | | | |

For end loaded connections greater than 30 in, see AISC Specification Table J3.2 footnote b.

Steel Bolts & Welding 8
Lecture 18

Architectural Structures
ARCH 331

http://www.fastenal.com

Su2014abn
Bolts

• bearing

\[R_a \leq \frac{R_n}{\Omega} \]

\[R_u \leq \phi R_n \]

\[\phi = 0.75 \]

– deformation is concern

\[R_n = 1.2 L_c t F_u \leq 2.4 d t F_u \]

– deformation isn’t concern

\[R_n = 1.5 L_c t F_u \leq 3.0 d t F_u \]

– long slotted holes

\[R_n = 1.0 L_c t F_u \leq 2.0 d t F_u \]

\(L_c \) – clear length to edge or next hole (ex. 1¼”, 3”)

\(\Omega \) – factor of safety

\(d \) – diameter of bolt

\(t \) – thickness of element

\(F_u \) – ultimate tensile strength
Table 7-5
Available Bearing Strength at Bolt Holes Based on Edge Distance (kips/in. thickness)

<table>
<thead>
<tr>
<th>Hole Type</th>
<th>Edge Distance</th>
<th>F_a ksi</th>
<th>Nominal Bolt Diameter, d, in.</th>
<th>F_b/Ω</th>
<th>F_d/Ω</th>
<th>F_f/Ω</th>
<th>F_f/Ω</th>
<th>F_i/Ω</th>
<th>F_i/Ω</th>
<th>F_i/Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L_e, in.</td>
<td></td>
<td></td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
<td>LRFD</td>
<td>ASD</td>
</tr>
<tr>
<td>STD SSLT</td>
<td>1 1/4</td>
<td>58</td>
<td>31.5</td>
<td>47.3</td>
<td>23.9</td>
<td>40.8</td>
<td>27.3</td>
<td>13.3</td>
<td>51.1</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>65</td>
<td>35.3</td>
<td>50.6</td>
<td>27.9</td>
<td>42.0</td>
<td>24.7</td>
<td>14.2</td>
<td>56.1</td>
<td>24.7</td>
</tr>
<tr>
<td>SSLP</td>
<td>1 1/4</td>
<td>58</td>
<td>28.3</td>
<td>42.4</td>
<td>23.9</td>
<td>40.8</td>
<td>27.3</td>
<td>13.3</td>
<td>51.1</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>65</td>
<td>31.7</td>
<td>47.3</td>
<td>27.9</td>
<td>42.0</td>
<td>24.7</td>
<td>14.2</td>
<td>56.1</td>
<td>24.7</td>
</tr>
<tr>
<td>OVS</td>
<td>1 1/4</td>
<td>58</td>
<td>26.3</td>
<td>44.0</td>
<td>26.1</td>
<td>40.8</td>
<td>24.7</td>
<td>14.2</td>
<td>51.1</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>65</td>
<td>28.8</td>
<td>50.6</td>
<td>27.9</td>
<td>42.0</td>
<td>24.7</td>
<td>14.2</td>
<td>56.1</td>
<td>24.7</td>
</tr>
<tr>
<td>LSLP</td>
<td>1 1/4</td>
<td>58</td>
<td>24.3</td>
<td>52.2</td>
<td>27.9</td>
<td>42.0</td>
<td>24.7</td>
<td>14.2</td>
<td>44.0</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>65</td>
<td>26.8</td>
<td>54.3</td>
<td>27.9</td>
<td>42.0</td>
<td>24.7</td>
<td>14.2</td>
<td>49.3</td>
<td>27.9</td>
</tr>
</tbody>
</table>

Table 7-3 (continued)
Slip-Critical Connections
Available Shear Strength, kips (Class A Faying Surface, $\mu = 0.30$)

<table>
<thead>
<tr>
<th>Group B Bolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Bolt Diameter, d, in.</td>
</tr>
<tr>
<td>F_b/Ω</td>
</tr>
<tr>
<td>ASD</td>
</tr>
<tr>
<td>STD SSLT</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>OVS SSLP</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>LSL</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

STD = standard hole
SSLT = short-slotted hole oriented transverse to the line of force
SSLP = short-slotted hole oriented parallel to the line of force
OVS = oversized hole
LSL = long-slotted hole oriented parallel or transverse to the line of force

Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads in the fillers.
Welded Connection Design

- shear stress
- yielding
- rupture
Welded Connection Design

- **weld terms**
 - butt weld
 - fillet weld
 - plug weld
 - throat

- **field welding**
- **shop welding**
Welded Connection Design

• **weld process**
 – melting of material
 – melted filler - electrode
 – shielding gas / flux
 – potential defects

• **weld materials**
 – E60XX
 – E70XX
 \[F_{EXX} = 70 \text{ ksi} \]
Welded Connection Design

• shear failure assumed
• throat
 – \(T = 0.707 \times \text{weld size} \)
• area
 – \(A = T \times \text{length of weld} \)
• weld metal generally stronger than base metal (ex. \(F_y = 50 \text{ ksi} \))
Welded Connection Design

- **minimum**
 - table
- **maximum**
 - material thickness (to ¼”)
 - 1/16” less
- **min. length**
 - 4 x size min.
 - ≥ 1 ½”

TABLE J2.4
Minimum Size of Fillet Welds

<table>
<thead>
<tr>
<th>Material Thickness of Thicker Part Joined, in. (mm)</th>
<th>Minimum Size of Fillet Weld[a] in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To 1/8 (6) inclusive</td>
<td>1/16 (3)</td>
</tr>
<tr>
<td>Over 1/8 (6) to 1/4 (13)</td>
<td>3/32 (5)</td>
</tr>
<tr>
<td>Over 1/4 (13) to 5/32 (19)</td>
<td>1/32 (6)</td>
</tr>
<tr>
<td>Over 5/32 (19)</td>
<td>3/64 (8)</td>
</tr>
</tbody>
</table>

[a] Leg dimension of fillet welds. Single pass welds must be used.
[b] See Section J2.25 for maximum size of fillet welds.
Welded Connection Design

- shear

\[R_a \leq \frac{R_n}{\Omega} \]
\[R_u \leq \phi R_n \]
\[\phi = 0.75 \]

\[R_n = 0.6F_{EXX} Tl = Sl \]

- table for \(\phi \)S

| Available Strength of Fillet Welds per inch of weld (\(\phi \)S) |
|-----------------|-----------------|-----------------|
| Weld Size (in.) | E60XX (k/in.) | E70XX (k/in.) |
| \(\frac{3}{8} \) | 3.58 | 4.18 |
| \(\frac{1}{4} \) | 4.77 | 5.57 |
| \(\frac{5}{32} \) | 5.97 | 6.96 |
| \(\frac{3}{32} \) | 7.16 | 8.35 |
| \(\frac{1}{16} \) | 8.35 | 9.74 |
| \(\frac{1}{8} \) | 9.55 | 11.14 |
| \(\frac{5}{16} \) | 11.93 | 13.92 |
| \(\frac{3}{4} \) | 14.32 | 16.70 |

(not considering increase in throat with submerged arc weld process)
Framed Beam Connections

- **angles**
 - bolted
 - welded
Framed Beam Connections

- terms
 - coping

(AISC - Steel Structures of the Everyday)
Framed Beam Connections

- tables for standard bolt sizes & spacings
- # bolts
- bolt diameter, angle leg thickness
- bearing on beam web
Framed Beam Connections

- welded example (shear)

(AISC - Steel Structures of the Everyday)
Framed Beam Connections

• welded moment example

(AISC - Steel Structures of the Everyday)
Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)
Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)
Beam Connections

• LRFD provisions
 – shear yielding
 – shear rupture
 – block shear rupture
 – tension yielding
 – tension rupture
 – local web buckling
 – lateral torsional buckling
Beam Connections \(\phi = 0.75 \)

\[R_n = 0.6F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6F_y A_{gv} + U_{bs} F_u A_{nt} \]

– where \(U_{bs} \) is 1 for uniform tensile stress

Figure 2-1. Block Shear Rupture Limit State
(Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

Figure 2-14. Tension Fracture Limit State
(Photo by J.A. Swanson and R. Leon, courtesy of Georgia Institute of Technology)

block shear rupture

tension rupture
Other Connections

• seated beam
• continuous
 – beam to column
 – beam to beam
Other Connections

- splices
Other Connections

- rigid frame knees
- gussets & joints

(AISC - Steel Structures of the Everyday)
Other Connections

- base plates
 - anchor bolts
 - bearing on steel
 - bending of plate

http://courses.civil.ualberta.ca