lecture twenty one

concrete construction:
shear & deflection
Shear in Concrete Beams

- *flexure combines with shear to form diagonal cracks*

- *horizontal reinforcement doesn’t help*

- *stirrups = vertical reinforcement*
ACI Shear Values

- V_u is at distance d from face of support
- shear capacity: $V_c = v_c \times b_w d$

- where b_w means thickness of web at n.a.
ACI Shear Values

- **shear stress (beams)**

 \[v_c = 2 \sqrt{f'_c} \]

 \[\phi V_c = \phi 2 \sqrt{f'_c} b_w d \]

 \(\phi \) = 0.75 for shear

 \(f'_c \) is in psi

- **shear strength:**

 \[V_u \leq \phi V_c + \phi V_s \]

 - \(V_s \) is strength from stirrup reinforcement

![Figure 13.17](image_url) Consideration for spacing of a single stirrup.
Stirrup Reinforcement

• shear capacity:

\[V_s = \frac{A_v f_y d}{s} \]

– \(A_v = \text{area in all legs of stirrups} \)
– \(s = \text{spacing of stirrup} \)

• may need stirrups when concrete has enough strength!
Required Stirrup Reinforcement

- spacing limits

Table 3-8 ACI Provisions for Shear Design*

<table>
<thead>
<tr>
<th></th>
<th>$V_u \leq \frac{\phi V_c}{2}$</th>
<th>$\phi V_c \geq V_u > \frac{\phi V_c}{2}$</th>
<th>$V_u > \phi V_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required area of stirrups, A_v **</td>
<td>none</td>
<td>$\frac{50b_ws}{f_y}$</td>
<td>$\frac{(V_u - \phi V_c)s}{\phi f_y d}$</td>
</tr>
<tr>
<td>Stirrup spacing, s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required</td>
<td>$-\leq\frac{A_v f_y}{50b_w}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum †</td>
<td></td>
<td></td>
<td>4 in.</td>
</tr>
<tr>
<td>Maximum ††</td>
<td></td>
<td>$\frac{d}{2}$ or 24 in.</td>
<td>$\frac{d}{2}$ or 24 in. for $(V_u - \phi V_c) \leq \phi 4\sqrt{f'_c} b wd$</td>
</tr>
<tr>
<td>(ACI 11.5.4)</td>
<td></td>
<td></td>
<td>$\frac{d}{2}$ or 12 in. for $(V_u - \phi V_c) > \phi 4\sqrt{f'_c} b wd$</td>
</tr>
</tbody>
</table>

*Members subjected to shear and flexure only; $\phi V_c = \phi 2 \sqrt{f'_c} b wd$, $\phi = 0.75$ (ACI 11.3.1.1)

**$A_v = 2 \times A_b$ for U stirrups; $f_y \leq 60$ ksi (ACI 11.5.2)

†A practical limit for minimum spacing is $d/4$

††Maximum spacing based on minimum shear reinforcement ($= A_v f_y/50b_w$) must also be considered (ACI 11.5.5.3).
Torsional Stress & Strain

• can see torsional stresses & twisting of axi-symmetrical cross sections
 – torque
 – remain plane
 – undistorted
 – rotates

• not true for square sections....
Shear Stress Distribution

- depend on the deformation
- $\phi = \text{angle of twist}$
 - measure
- can prove planar section doesn’t distort
Shearing Strain

- related to ϕ
 \[\gamma = \frac{\rho \phi}{L} \]

- ρ is the radial distance from the centroid to the point under strain

- shear strain varies linearly along the radius: γ_{max} is at outer diameter
Torsional Stress - Strain

- know \(f_v = \tau = G \cdot \gamma \) and \(\gamma = \frac{\rho \phi}{L} \)
- so \(\tau = G \cdot \frac{\rho \phi}{L} \)
- where G is the Shear Modulus
Torsional Stress - Strain

- from

\[T = \Sigma \tau(\rho) \Delta A \]

- can derive

\[T = \frac{\tau J}{\rho} \]

- where \(J \) is the polar moment of inertia

- elastic range

\[\tau = \frac{T \rho}{J} \]
Shear Stress

- τ_{max} happens at outer diameter

- combined shear and axial stresses
 - maximum shear stress at 45° “twisted” plane
Shear Strain

- knowing \(\tau = G \cdot \frac{\rho \phi}{L} \) and \(\tau = \frac{T\rho}{J} \)

- solve: \(\phi = \frac{TL}{JG} \)

- composite shafts: \(\phi = \sum_i \frac{T_iL_i}{J_iG_i} \)
Noncircular Shapes

- torsion depends on J
- plane sections don’t remain plane
- τ_{max} is still at outer diameter

$$\tau_{\text{max}} = \frac{T}{c_1 ab^2} \quad \phi = \frac{TL}{c_2 ab^3 G}$$

- where a is longer side ($> b$)

<table>
<thead>
<tr>
<th>a/b</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>∞</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Open Thin-Walled Sections

- with very large a/b ratios:

\[\tau_{\text{max}} = \frac{T}{\frac{1}{3}ab^2} \]
\[\phi = \frac{TL}{\frac{1}{3}ab^3G} \]
Shear Flow in Closed Sections

- q is the internal shear force/unit length

$$
\tau = \frac{T}{2t\alpha}
$$

$$
\phi = \frac{TL}{4t\alpha^2} \sum_i \frac{s_i}{t_i}
$$

- α is the area bounded by the centerline
- s_i is the length segment, t_i is the thickness
Shear Flow in Open Sections

- each segment has proportion of T with respect to torsional rigidity,

\[\tau_{\text{max}} = \frac{T t_{\text{max}}}{\frac{1}{3} \Sigma b_i t_i^3} \]

- total angle of twist:

\[\phi = \frac{TL}{\frac{1}{3} G \Sigma b_i t_i^3} \]

- I beams - web is thicker, so τ_{max} is in web
Torsional Shear Stress

- **twisting moment**
- **and beam shear**

![Diagram of architectural structures showing torsional and shear stresses in hollow and solid sections.](image)

Fig. R11.6.3.1—Addition of torsional and shear stresses
Torsional Shear Reinforcement

- closed stirrups
- more longitudinal reinforcement
- area enclosed by shear flow

Fig. R11.6.3.6(a)—Space truss analogy

Fig. R11.6.3.6(b)—Definition of A_{oh}
Development Lengths

• required to allow steel to yield (f_y)
• standard hooks
 – moment at beam end

• splices
 – lapped
 – mechanical connectors
Development Lengths

- l_d, embedment required both sides

- proper cover, spacing:
 - No. 6 or smaller
 $$l_d = \frac{d_b F_y}{25 \sqrt{f'_c}} \text{ or 12 in. minimum}$$
 - No. 7 or larger
 $$l_d = \frac{d_b F_y}{20 \sqrt{f'_c}} \text{ or 12 in. minimum}$$
Development Lengths

- **hooks**
 - bend and extension

\[l_{dh} = \frac{1200d_b}{\sqrt{f'_c}} \]

Figure 9-17: Minimum requirements for 90° bar hooks.

Figure 9-18: Minimum requirements for 180° bar hooks.
Development Lengths

- **bars in compression**
 \[l_d = \frac{0.02d_b F_y}{\sqrt{f'_c}} \leq 0.0003d_b F_y \]

- **splices**
 - tension minimum is function of \(l_d \) and splice classification
 - compression minimum
 - is function of \(d_b \) and \(F_y \)
Concrete Deflections

- elastic range
 - I transformed
 - E_c (with f'_c in psi)
 - normal weight concrete (~ 145 lb/ft3)
 $$E_c = 57,000 \sqrt{f'_c}$$
 - concrete between 90 and 160 lb/ft3
 $$E_c = w_c^{1.5} 33 \sqrt{f'_c}$$
 - cracked
 - I cracked
 - E adjusted

\[nA_s \]
Deflection Limits

• relate to whether or not beam supports or is attached to a damageable non-structural element

• need to check service live load and long term deflection against these

<table>
<thead>
<tr>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/180</td>
<td>roof systems (typical) – live</td>
</tr>
<tr>
<td>L/240</td>
<td>floor systems (typical) – live + long term</td>
</tr>
<tr>
<td>L/360</td>
<td>supporting plaster – live</td>
</tr>
<tr>
<td>L/480</td>
<td>supporting masonry – live + long term</td>
</tr>
</tbody>
</table>