beams –
internal forces & diagrams
Beams

- span horizontally
 - floors
 - bridges
 - roofs

- loaded transversely by gravity loads
- may have internal axial force
- will have internal shear force
- will have internal moment (bending)
Beams

• *transverse loading*

• **sees:**
 – bending
 – shear
 – deflection
 – torsion
 – bearing

• **behavior depends on cross section shape**
Beams

- **bending**
 - bowing of beam with loads
 - one edge surface stretches
 - other edge surface squishes
Beam Stresses

- stress = relative force over an area
 - tensile
 - compressive
 - bending

- tension and compression + ...
Beam Stresses

Unreinforced concrete beam fails in tension (cracks on bottom)

Steel reinforcing in bottom of beam resists tension
Beam Stresses

- tension and compression
 - causes moments

Copyright © 1996-2000 Kirk Martini.
Beam Stresses

- **prestress or post-tensioning**
 - put stresses in tension area to "pre-compress"
Beam Stresses

- shear – horizontal & vertical

[Diagram showing beam section with labels for horizontal and vertical slices, and steps for replacing and holding with tape.]
Beam Stresses

- shear – horizontal & vertical
Beam Stresses

• shear – horizontal
Beam Deflections

- depends on
 - load
 - section
 - material
Beam Deflections

• “moment of inertia”
Beam Styles

- vierendeel
- open web joists
- manufactured

http://nisee.berkeley.edu/godden
Internal Forces

- **trusses**
 - axial only, (compression & tension)

- **in general**
 - axial force
 - shear force, V
 - bending moment, M
Beam Loading

- concentrated force
- concentrated moment
 - spandrel beams
Beam Loading

- uniformly distributed load (line load)
- non-uniformly distributed load
 - hydrostatic pressure = γh
 - wind loads
Beam Supports

- **statically determinate**

- **statically indeterminate**
Beam Supports

- *in the real world, modeled type*

(a) Beam supported by a neoprene pad.

(c) Timber beam–column connection with T-plate.
Internal Forces in Beams

- like method of sections / joints
 - no axial forces
- section must be in equilibrium
- want to know where biggest internal forces and moments are for designing
V & M Diagrams

- tool to locate V_{max} and M_{max} (at $V = 0$)
- necessary for designing
- have a different sign convention than external forces, moments, and reactions
Sign Convention

• shear force, V:
 – cut section to LEFT
 – if ΣF_y is positive by statics, V acts down and is POSITIVE
 – beam has to resist shearing apart by V
Shear Sign Convention

(+) Shear.

(-) Shear.

(+) Shear.

(-) Shear.
Sign Convention

- **bending moment, \(M \):**
 - cut section to LEFT
 - if \(\sum M_{\text{cut}} \) is clockwise, \(M \) acts ccw and is POSITIVE – flexes into a “smiley” beam has to resist bending apart by \(M \)
Bending Moment Sign Convention

(+) Moment.

(−) Moment.

Holds Water

Sheds Water

(+) Moment.

(−) Moment.
Deflected Shape

- **positive bending moment**
 - tension in bottom, compression in top
- **negative bending moment**
 - tension in top, compression in bottom
- **zero bending moment**
 - inflection point
Constructing V & M Diagrams

- along the beam length, plot V, plot M

load diagram
Mathematical Method

- cut sections with x as width
- write functions of $V(x)$ and $M(x)$
Method 1: Equilibrium

- cut sections at important places
- plot V & M
Method 1: Equilibrium

• **important places**
 - supports
 - concentrated loads
 - start and end of distributed loads
 - concentrated moments

• **free ends**
 - zero forces
Method 2: Semigraphical

- by knowing
 - area under loading curve = change in \(V \)
 - area under shear curve = change in \(M \)
 - concentrated forces cause “jump” in \(V \)
 - concentrated moments cause “jump” in \(M \)

\[
V_D - V_C = - \int_{x_c}^{x_D}wdx \quad M_D - M_C = \int_{x_c}^{x_D}Vdx
\]
Method 2

- relationships
Method 2: Semigraphical

- M_{max} occurs where $V = 0$ (calculus)
Curve Relationships

- integration of functions
- line with 0 slope, integrates to sloped

- ex: load to shear, shear to moment
Curve Relationships

- line with slope, integrates to parabola

- ex: load to shear, shear to moment
Curve Relationships

- parabola, integrates to 3^{rd} order curve

- ex: load to shear, shear to moment
Basic Procedure with Sections

1. Find reaction forces & moments
 Plot axes, underneath beam load diagram

V:

2. Starting at left

3. Shear is 0 at free ends

4. Shear has 2 values at point loads

5. Sum vertical forces at each section
Basic Procedure with Sections

M:

6. Starting at left
7. Moment is 0 at free ends
8. Moment has 2 values at moments
9. Sum moments at each section
10. Maximum moment is where shear = 0! (locate where V = 0)
Basic Procedure by Curves

1. Find reaction forces & moments
 Plot axes, underneath beam load diagram

V:

2. Starting at left

3. Shear is 0 at free ends

4. Shear jumps with concentrated load

5. Shear changes with area under load
Basic Procedure by Curves

M:

6. **Starting at left**

7. **Moment is 0 at free ends**

8. **Moment jumps with moment**

9. **Moment changes with area under V**

10. **Maximum moment is where shear = 0!**
 (locate where V = 0)
Shear Through Zero

• slope of V is \(w \) \((-w:1)\)

\[
\begin{align*}
\text{height} &= V_A \\
\text{width} &= x \\
x \cdot w &= V_A \\
\Rightarrow x &= \frac{V_A}{w}
\end{align*}
\]
Parabolic Shapes

- cases

up fast, then slow
up slow, then fast
down fast, then slow
down slow, then fast
Deflected Shape & $M(x)$

- $-M(x)$ gives shape indication
- boundary conditions must be met
Boundary Conditions

- at pins, rollers, fixed supports: $y = 0$
- at fixed supports: $\theta = 0$
- at inflection points from symmetry: $\theta = 0$
- y_{max} at $\frac{dy}{dx} = 0$
Tabulated Beam Formulas

- how to read charts

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

- Total Equiv. Uniform Load \(wl \)
- Reaction \(R = V = \frac{wl}{2} \)
- Shear \(V_x = w \left(\frac{l}{2} - x \right) \)
- Moment \(M_{\text{max. (at center)}} = \frac{wl^2}{8} \)
- Moment \(M_x = \frac{wx}{2} (l - x) \)
- Deflection \(\Delta_{\text{max. (at center)}} = \frac{5wl^4}{384EI} \)
- Deflection \(\Delta_x = \frac{wx}{24EI} \left(l^3 - 2lx^2 + x^3 \right) \)
Tools

- software & spreadsheets help
Tools – Multiframe

- in computer lab
Tools – Multiframe

- frame window
 - define beam members
 - select points, assign supports
 - select members, assign section

- load window
 - select point or member, add point or distributed loads
Tools – Multiframe

- to run analysis choose
 - Analyze menu
 - Linear

- plot
 - choose options
 - double click (all)

- results
 - choose options