Rigid Frames

- rigid frames have no pins
- frame is all one body
- joints transfer moments and shear
- typically statically indeterminate
- types
 - portal
 - gable

Rigid Frames

- moments get redistributed
- deflections are smaller
- effective column lengths are shorter
- very sensitive to settling
Moment Redistribution

- continuous slabs & beams with uniform loading
 - joints similar to fixed ends, but can rotate
- change in moment to center = \(\frac{wL^2}{8} \)
- \(M_{\text{max}} \) for simply supported beam

Rigid Frames

- resists lateral loadings
- shape depends on stiffness of beams and columns
- \(90^\circ \) maintained

Rigid Frames

- staggered truss
 - rigidity
 - clear stories

Rigid Frames

- connections
 - steel
 - concrete
Braced Frames

- pin connections
- bracing to prevent lateral movements

Braced Frames

- types of bracing
 - knee-bracing
 - diagonal
 - X
 - K or chevron
 - shear walls

Shear Walls

- resist lateral load in plane with wall

Shear Walls

- resist lateral load in plane with wall

Compression Members

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations
Column Buckling
- axially loaded columns
- long & slender
 - unstable equilibrium = buckling
 - sudden and not good

Modeling
- can be modeled with a spring at mid-height
- when moment from deflection exceeds the spring capacity ... "boing"
- critical load P

Effect of Length
- long & slender
- short & stubby

Buckling Load
- related to deflected shape ($P\Delta$)
- shape of sine wave
- Euler’s Formula
- smallest I governs

\[
P_{\text{critical}} = \frac{\pi^2 EI}{(L)^2}
\]
Critical Stress

- short columns
 \[f_{\text{critical}} = \frac{P_{\text{actual}}}{A} < F_a \]
- slenderness ratio = \(L_e/r \) (L/d)
- radius of gyration = \(r = \sqrt{\frac{I}{A}} \)

\[f_{\text{critical}} = \frac{P_{\text{critical}}}{A} = \frac{\pi^2 E A r^2}{A(L_e)^2} = \left(\frac{\pi^2 E}{L_e/r} \right)^2 \]

\[P_{\text{critical}} = \frac{\pi^2 E A}{\left(\frac{L_e}{r} \right)^2} \]

Effective Length

- end conditions affect shape
- effective length factor, \(K \)
 \[L_e = K \cdot L \]

Critical Stresses

- when a column gets stubby, \(F_y \) will limit the load
- real world has loads with eccentricity
- \(C_c \) for steel and allowable stress

\[\frac{L_e}{r} > C_c = \sqrt{\frac{2\pi^2 E}{F_y}} \]

Bracing

- bracing affects shape of buckle in one direction
- both should be checked!
Centric & Eccentric Loading

- **centric**
 - allowable stress from strength or buckling
- **eccentric**
 - combined stresses

Combined Stresses

- axial + bending
 \[
 f_{\text{max}} = \frac{P}{A} + \frac{Mc}{I}
 \]
 \[
 M = P \cdot e
 \]
- design
 \[
 f_{\text{max}} \leq F_{\text{cr}} = \frac{f_{\text{cr}}}{F.S.}
 \]

Stress Limit Conditions

- **ASD interaction formula**
 \[
 \frac{f_a}{F_a} + \frac{f_b}{F_b} \leq 1.0
 \]
- with biaxial bending
 \[
 \frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \leq 1.0
 \]
 \[
 \text{interaction diagram}
 \]
Rigid Frame Analysis

- members see
 - shear
 - axial force
 - bending
- V & M diagrams
 - plot on “outside”

Rigid Frame Analysis

- need support reactions
- free body diagram each member
- end reactions are equal and opposite on next member
- “turn” member like beam
- draw V & M

Rigid Frame Analysis

- FBD & M
 - opposite end reactions at joints

Rigid Frame Design

- loads and combinations
 - usually uniformly distributed gravity loads
 - worst case for largest moments...
 - wind direction can increase moments
Rigid Frame Design

• frames & floors
 – rigid frame can have slab floors or slab with connecting beams

• other
 – slabs or plates on columns

Rigid Frame Design

• floors – plates & slabs
 – one-way behavior
 • side ratio > 1.5
 • “strip” beam
 – two-way behavior
 • more complex

Rigid Frame Design

• columns in frames
 – ends can be “flexible”
 – stiffness affected by beams and column = EI/L

\[G = \Psi = \frac{\sum EI}{l_c} \]

– for the joint
 • l_c is the column length of each column
 • l_b is the beam length of each beam
 • measured center to center
Tools – Multiframe

- in computer lab

- frame window
 - define frame members
 - or pre-defined frame
 - select points, assign supports
 - select members, assign section
 - load window
 - select point or member, add point or distributed loads

Tools – Multiframe

- to run analysis choose
 - Analyze menu
 - Linear
 - plot
 - choose options
 - results
 - choose options