Wood Beam Design

- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined in 2005)
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e., bending:

\[f_b \leq F'_b = F_b \times (\text{product of adjustment factors}) \]

Timber

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives

Wood Properties

- cell structure and density

[Diagram of wood structure and density]

[Images of hardwood and softwood]

http://www.swst.org/teach/swst2/struct1.html
Wood Properties

- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some

- temperature
 - steam
 - volatile products
 - combustion

http://www.swst.org/teach/wood/struct1.html

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- creep
 - additional deformation with no additional load

Structural Lumber

- dimension – 2 x’s (nominal)
- beams, posts, timber, planks
- grading
 - select structural
 - no. 1, 2, & 3
- tabular values by species
- glu-lam
- plywood

Adjustment Factors

- terms
 - $C_D = \text{load duration factor}$
 - $C_M = \text{wet service factor}$
 - 1.0 dry \leq 16% MC
 - $C_F = \text{size factor}$
 - visually graded sawn lumber and round timber > 12” depth

$$C_F = \left(\frac{12}{d} \right)^{0.9} \leq 1.0$$

Table 10.3 (pg 376)
Adjustment Factors

• terms
 – C_{fu} = flat use factor
 • not decking
 – C_i = incising factor
 • increase depth for pressure treatment
 – C_t = temperature factor
 • lose strength at high temperatures

Adjustment Factors

• terms
 – C_r = repetitive member factor
 – C_H = shear stress factor
 • splitting
 – C_V = volume factor
 • same as C_F for glue laminated timber
 – C_L = beam stability factor
 • beams without full lateral support
 – C_c = curvature factor for laminated arches

Allowable Stresses

• design values
 – F_b: bending stress
 – F_t: tensile stress
 • strong
 – F_v: horizontal shear stress
 – $F_{c,\perp}$: compression stress
 (perpendicular to grain)
 – F_c: compression stress
 (parallel to grain)
 • strong
 – E: modulus of elasticity
 – F_p: bearing stress
 (parallel to grain)

Load Combinations

• design loads, take the bigger of
 – (dead loads)/0.9
 – (dead loads + any possible combination of
 live loads)/C_D

• deflection limits
 – no load factors
 – for stiffer members:
 • Δ_T max from $LL + 0.5(DL)$
Beam Design Criteria

• strength design
 – bending stresses predominate
 – shear stresses occur
• serviceability
 – limit deflection and cracking
 – control noise & vibration
 – no excessive settlement of foundations
 – durability
 – appearance
 – component damage
 – ponding

Beam Deformations

• curvature relates to
 – bending moment
 – modulus of elasticity
 – moment of inertia

\[\frac{1}{R} = \frac{M}{EI} \]

\[\text{curvature} = \frac{M(x)}{EI} \]

\[\theta = \text{slope} = \int \frac{M(x)}{EI} \, dx \]

\[\Delta = \text{deflection} = \int \int \frac{M(x)}{EI} \, dx \]

Beam Design Criteria

• superpositioning
 – use of beam charts
 – elastic range only!
 – “add” moment diagrams
 – “add” deflection CURVES (not maximums)

Deflection Limits

• based on service condition, severity

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y

Design Procedure

1. Know F_{all} for the material or F_{U} for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{req'd}$ ($f_b \leq F_b$)

4. Determine section size $S = \frac{bh^2}{6}$

Timber Beam Bracing

Beam Design

4*. Include self weight for M_{max}
– and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.
Photo: Ken Carper
Beam Design

6. Evaluate shear stresses - horizontal
 \((f_v \leq F_v)\)
 - rectangles and W's
 \[f_{v\text{-max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}} \]
 - general
 \[f_{v\text{-max}} = \frac{VQ}{Ib} \]

Beam Design

7. Provide adequate bearing area at supports
 \[f_p = \frac{P}{A} \leq F_p \]

Beam Design

8. Evaluate torsion
 \((f_v \leq F_v)\)
 - circular cross section
 \[f_v = \frac{T\rho}{J} \]
 - rectangular
 \[f_v = \frac{T}{c_1 ab^2} \]

Beam Design

9. Evaluate deflections
 \[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Decking

- across beams or joists
- floors: 16 in. span common
 - ¾ in. tongue-in-groove plywood
 - 5/8 in. particle board over ½ in. plywood
 - hardwood surfacing
- roofs: 24 in. span common
 - ½ in. plywood

Joists & Rafters

- allowable load tables \((w) \)
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings

Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms

Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

- **I sections**
 - beams
- **other products**
 - pressed veneer strip panels (Parallam)
 - (LVL)
- **wood fibers**
 - Hardieboard: cement & wood

Timber Elements

- **stressed-skin elements**
 - modular built-up “plates”
 - typically used for floors or roofs

Timber Elements

- **built-up box sections**
 - built-up beams
 - usually site-fabricated
 - bigger spans

Timber Elements

- **trusses**
 - long spans
 - versatile
 - common in roofs
Timber Elements

- folded plates and arch panels
 - usually of plywood

Approximate Depths

Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs