steel construction: columns & tension members

Design Methods (revisited)

• know
 – loads or lengths
• select
 – section or load
 – adequate for strength and no buckling

Structural Steel

• standard rolled shapes (W, C, L, T)
• tubing
• pipe
• built-up

Allowable Stress Design (ASD)

• AICS 9th ed

\[
F_a = \frac{f_{\text{critical}}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2}
\]

• slenderness ratio \(\frac{Kl}{r} \)
 – for \(kl/r \geq C_c \) = 126.1 with \(F_y = 36 \text{ ksi} \)
 = 107.0 with \(F_y = 50 \text{ ksi} \)
\[C_c \quad \text{and Euler's Formula} \]

- \(KL/r < C_c \)
 - short and stubby
 - parabolic transition

- \(KL/r > C_c \)
 - Euler's relationship
 - < 200 preferred

\[C_c = \sqrt{\frac{2\pi^2 E}{F_y}} \]

\[\text{Short / Intermediate} \]

- \(L_e/r < C_c \)
 \[F_a = 1 - \left(\frac{KL/r}{2C_c^2} \right) \frac{F_y}{F.S.} \]
 - where

\[F.S. = \frac{5}{3} + \frac{3(KL/r)}{8C_c} - \frac{(KL/r)^3}{8C_c^3} \]

\[\text{Unified Design} \]

- limit states for failure
 \[P_a \leq \frac{P_n}{\Omega} \]

\[\phi_c = 0.90 \quad P_n = F_{cr} A_g \quad P_u \leq \phi_c P_n \]

1. yielding \(\frac{KL}{r} \leq 4.71 \frac{E}{F_y} \) or \(F_e \geq 0.44F_y \)

2. buckling \(\frac{KL}{r} > 4.71 \frac{E}{F_y} \) or \(F_e < 0.44F_y \)

\(F_e \) – elastic buckling stress (Euler)
Unified Design

- $P_n = F_{cr}A_g$
 - for $\frac{KL}{r} \leq 4.71 \sqrt{\frac{E}{F_y}} F_{cr} = \left[0.658 \frac{F_y}{F_e}\right] F_y$
 - for $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}} F_{cr} = 0.877 F$
 - where $F_e = \frac{\pi^2 E}{(KL/r)^2}$

Procedure for Analysis

1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
2. find F_a or F_{cr} from appropriate equation
 - tables are available
3. compute $P_{allowable} = F_a A$ or $P_n = F_{cr}A_g$
 - or find $f_{actual} = P/A$
4. is $P \leq P_{allowable}$ (or $P_n \leq \phi P_n$)?
 - yes: ok
 - no: insufficient capacity and no good

Procedure for Design

1. guess a size (pick a section)
2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
3. find F_a or F_{cr} from appropriate equations
 - or find a chart
4. compute $P_{allowable} = F_a A$ (or $P_n/\Omega = F_{cr}A$)
 - or $P_n = F_{cr}A_g$
 - or find $f_{actual} = P/A$
5. is $P \leq P_{allowable}$? or is $P_u \leq \phi P_n$?
 - yes: ok
 - no: pick a bigger section and go back to step 2.
6. check design efficiency
 - percentage of stress $= \frac{P}{P_c} \cdot 100\%$
 - if between 90-100%: good
 - if < 90%: pick a smaller section and go back to step 2.
Column Charts, F_a (pg. 361-364)

Table 10.1 Allowable stress for compression members ($F_y = 36$ ksi and $F_a = 250$ MPa).

<table>
<thead>
<tr>
<th>KL</th>
<th>F_a (ksi)</th>
<th>F_a (MPa)</th>
<th>KL</th>
<th>F_a (ksi)</th>
<th>F_a (MPa)</th>
<th>KL</th>
<th>F_a (ksi)</th>
<th>F_a (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.86</td>
<td>148.7</td>
<td>4</td>
<td>19.11</td>
<td>131.6</td>
<td>8</td>
<td>15.24</td>
<td>105.3</td>
</tr>
<tr>
<td>2</td>
<td>21.52</td>
<td>148.4</td>
<td>5</td>
<td>19.03</td>
<td>131.2</td>
<td>9</td>
<td>15.13</td>
<td>104.3</td>
</tr>
<tr>
<td>3</td>
<td>21.48</td>
<td>148.1</td>
<td>6</td>
<td>18.95</td>
<td>130.7</td>
<td>11</td>
<td>15.02</td>
<td>103.6</td>
</tr>
<tr>
<td>4</td>
<td>21.44</td>
<td>147.8</td>
<td>7</td>
<td>18.86</td>
<td>130.0</td>
<td>12</td>
<td>14.98</td>
<td>102.7</td>
</tr>
<tr>
<td>5</td>
<td>21.39</td>
<td>147.5</td>
<td>8</td>
<td>18.78</td>
<td>129.5</td>
<td>13</td>
<td>14.97</td>
<td>102.0</td>
</tr>
<tr>
<td>6</td>
<td>21.35</td>
<td>147.2</td>
<td>9</td>
<td>18.70</td>
<td>128.9</td>
<td>14</td>
<td>14.96</td>
<td>101.4</td>
</tr>
<tr>
<td>7</td>
<td>21.31</td>
<td>146.9</td>
<td>10</td>
<td>18.61</td>
<td>128.3</td>
<td>15</td>
<td>14.95</td>
<td>100.8</td>
</tr>
<tr>
<td>8</td>
<td>21.27</td>
<td>146.6</td>
<td>11</td>
<td>18.53</td>
<td>127.8</td>
<td>16</td>
<td>14.94</td>
<td>99.9</td>
</tr>
<tr>
<td>9</td>
<td>21.23</td>
<td>146.2</td>
<td>12</td>
<td>18.44</td>
<td>127.1</td>
<td>17</td>
<td>14.93</td>
<td>99.0</td>
</tr>
<tr>
<td>10</td>
<td>21.19</td>
<td>145.9</td>
<td>13</td>
<td>18.35</td>
<td>126.5</td>
<td>18</td>
<td>14.92</td>
<td>98.1</td>
</tr>
<tr>
<td>11</td>
<td>21.15</td>
<td>145.6</td>
<td>14</td>
<td>18.26</td>
<td>125.9</td>
<td>19</td>
<td>14.91</td>
<td>97.1</td>
</tr>
<tr>
<td>12</td>
<td>21.11</td>
<td>145.3</td>
<td>15</td>
<td>18.17</td>
<td>125.3</td>
<td>20</td>
<td>14.89</td>
<td>96.1</td>
</tr>
<tr>
<td>13</td>
<td>21.08</td>
<td>145.0</td>
<td>16</td>
<td>18.08</td>
<td>124.7</td>
<td>21</td>
<td>14.87</td>
<td>95.0</td>
</tr>
<tr>
<td>14</td>
<td>21.05</td>
<td>144.8</td>
<td>17</td>
<td>17.99</td>
<td>124.0</td>
<td>22</td>
<td>14.85</td>
<td>93.8</td>
</tr>
<tr>
<td>15</td>
<td>21.02</td>
<td>144.6</td>
<td>18</td>
<td>17.89</td>
<td>123.4</td>
<td>23</td>
<td>14.83</td>
<td>92.5</td>
</tr>
<tr>
<td>16</td>
<td>20.99</td>
<td>144.4</td>
<td>19</td>
<td>17.79</td>
<td>122.8</td>
<td>24</td>
<td>14.80</td>
<td>91.2</td>
</tr>
<tr>
<td>17</td>
<td>20.96</td>
<td>144.2</td>
<td>20</td>
<td>17.62</td>
<td>122.2</td>
<td>25</td>
<td>14.78</td>
<td>90.0</td>
</tr>
</tbody>
</table>

Factors of safety:
- $F_y = 50$ ksi
- W_{12}

Beam-Column Design

- moment magnification ($P-\Delta$)

$$M_u = B_1M_{max \text{ factored}} \quad B_1 = \frac{C_m}{1 - (P_u / P_{el})}$$

- C_m = modification factor for end conditions
- P_{el} = Euler buckling strength

$$P_{el} = \frac{\pi^2 EA}{(KL/r)^2}$$

Available Critical Stress, ϕF_{cr}, for Compression Members, kls ($F_y = 50$ ksi and $\phi = 0.90$)

<table>
<thead>
<tr>
<th>KL</th>
<th>ϕF_{cr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.0</td>
</tr>
<tr>
<td>2</td>
<td>45.0</td>
</tr>
<tr>
<td>3</td>
<td>45.0</td>
</tr>
<tr>
<td>4</td>
<td>44.9</td>
</tr>
<tr>
<td>5</td>
<td>44.9</td>
</tr>
<tr>
<td>6</td>
<td>44.8</td>
</tr>
<tr>
<td>7</td>
<td>44.8</td>
</tr>
<tr>
<td>8</td>
<td>44.8</td>
</tr>
<tr>
<td>9</td>
<td>44.7</td>
</tr>
<tr>
<td>10</td>
<td>44.7</td>
</tr>
<tr>
<td>11</td>
<td>44.6</td>
</tr>
<tr>
<td>12</td>
<td>44.5</td>
</tr>
<tr>
<td>13</td>
<td>44.4</td>
</tr>
<tr>
<td>14</td>
<td>44.4</td>
</tr>
<tr>
<td>15</td>
<td>44.3</td>
</tr>
<tr>
<td>16</td>
<td>44.2</td>
</tr>
<tr>
<td>17</td>
<td>44.2</td>
</tr>
<tr>
<td>18</td>
<td>44.1</td>
</tr>
<tr>
<td>19</td>
<td>44.1</td>
</tr>
<tr>
<td>20</td>
<td>44.0</td>
</tr>
</tbody>
</table>

Steel Columns & Tension 11
Foundations Structures
ARCH 331
Lecture 20

Steel Columns & Tension 14
Foundations Structures
ARCH 331
Lecture 17
Beam-Column Design

• LRFD (Unified) Steel
 – for
 $$\frac{P_r}{P_c} \geq 0.2 : \quad \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{\phi_u M_{ux}}{\phi_b M_{nx}} + \frac{\phi_u M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0$$
 – for
 $$\frac{P_r}{P_c} < 0.2 : \quad \frac{P_u}{2\phi_c P_n} + \left(\frac{\phi_u M_{ux}}{\phi_b M_{nx}} + \frac{\phi_u M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0$$

Pr is required, Pc is capacity

$$\phi_c$$ - resistance factor for compression = 0.9

$$\phi_b$$ - resistance factor for bending = 0.9

Design Steps Knowing Loads (revisited)

1. assume limiting stress
 • buckling, axial stress, combined stress
2. solve for r, A or S
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Rigid Frame Design (revisited)

• columns in frames
 – ends can be “flexible”
 – stiffness affected by beams and column = EI/L
 \[
 G = \Psi = \frac{\sum EI}{l_c}
 \]
 – for the joint
 • \(l_c\) is the column length of each column
 • \(l_b\) is the beam length of each beam
 • measured center to center

Rigid Frame Design (revisited)

• column effective length, \(k\)

Tension Members

- Steel members can have holes
- Reduced area
 \[A_n = A_g - A_{\text{of all holes}} + t\Sigma \frac{s}{4g} \]
 (AISC - Steel Structures of the Everyday)
- Increased stress

Effective Net Area

- Likely path to “rip” across
- Bolts divide transferred force too
- Shear lag
 \[A_e \leq A_n U \]

Tension Members

- Limit states for failure
 \[P_d \leq \frac{P_n}{\Omega} \quad P_u \leq \phi_t P_n \]

1. Yielding
 \[\phi_t = 0.90 \quad P_n = F_y A_g \]

2. Rupture*
 \[\phi_t = 0.75 \quad P_n = F_u A_e \]

- \(A_g \) - Gross area
- \(A_e \) - Effective net area
- (holes 1/8” + d)
- \(F_u \) = The tensile strength of the steel (ultimate)