Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

Bolts

- bolted steel connections

Welds

- welded steel connections
Bolts

- types
 - materials
 - high strength
 - A307, A325, A490
- location of threads
 - included - N
 - excluded - X
- friction or bearing (SC)
 - always tightened

Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture

Bolts

- rarely fail in bearing
- holes considered 1/8” larger
- shear & tension
 \[R_a \leq \frac{R_n}{\Omega} \]
 \[R_u \leq \phi_v R_n \]
 - single shear or tension
 \[\phi_v = 0.75 \]
 - double shear
 \[R_n = F_n A_b \]
 \[R_n = F_n 2A_b \]
Bolts

- **bearing**
 \[R_a \leq \frac{R_n}{\Omega} \]
 \[R_u \leq \phi R_n \]
 \[\phi = 0.75 \]
 - deformation is concern
 \[R_n = 1.2L_c t F_u \leq 2.4dt F_u \]
 - deformation isn’t concern
 \[R_n = 1.5L_c t F_u \leq 3.0dt F_u \]
 - long slotted holes
 \[R_n = 1.0L_c t F_u \leq 2.0dt F_u \]
 \(L_c \) – clear length to edge or next hole (ex. 1¼", 3")

Welded Connection Design

- **considerations**
 - shear stress
 - yielding
 - rupture

![Welded Connection Diagram](image-url)
Welded Connection Design

• weld process
 – melting of material
 – melted filler - electrode
 – shielding gas / flux
 – potential defects

• weld materials
 – E60XX
 – E70XX
 \(F_{\text{EXX}} = 70 \text{ ksi} \)

Welded Connection Design

• shear failure assumed
• throat
 – \(T = 0.707 \times \text{weld size} \)
• area
 – \(A = T \times \text{length of weld} \)
• weld metal generally stronger than base metal (ex. \(F_y = 50 \text{ ksi} \))

Welded Connection Design

• minimum
 – table
• maximum
 – material thickness (to \(\frac{1}{4}'' \))
 – 1/16” less
• min. length
 – 4 x size min.
 – \(\geq 1 \frac{1}{2}'' \)

Welded Connection Design

\[
R_n \leq \frac{R_u}{\Omega} \\
R_u \leq \phi R_n \\
\phi = 0.75
\]

\[
R_n = 0.6 F_{\text{EXX}} Tl = Sl
\]

– table for \(\phi \)S

TABLE J2.4

<table>
<thead>
<tr>
<th>Material Thickness of Thicker Part Joined, in. (mm)</th>
<th>Minimum Size of Fillet Weld((d), in. (mm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{32}) (1.6)</td>
<td>(\frac{1}{8} (3.2))</td>
</tr>
<tr>
<td>(\frac{1}{16}) (3.2)</td>
<td>(\frac{1}{8} (3.2))</td>
</tr>
</tbody>
</table>

(1) Leg diameter of fillet weld. Single pass welds may be used.
(2) Use section J2.2 for multiple size of fillet weld.
Framed Beam Connections

- angles
 - bolted
 - welded

Framed Beam Connections

- tables for standard
 bolt sizes & spacings
- # bolts
- bolt diameter, angle
 leg thickness
- bearing on
 beam web

Framed Beam Connections

- terms
 - coping

Framed Beam Connections

- welded example (shear)
Framed Beam Connections
• welded moment example

(AISC - Steel Structures of the Everyday)

Framed Beam Connections
• welded/bolted moment example

(AISC - Steel Structures of the Everyday)

Framed Beam Connections
• welded/bolted moment example

(AISC - Steel Structures of the Everyday)

Beam Connections
• LRFD provisions
 – shear yielding
 – shear rupture
 – block shear rupture
 – tension yielding
 – tension rupture
 – local web buckling
 – lateral torsional buckling
Beam Connections

\[R_n = 0.6F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6F_y A_{gv} + U_{bs} F_u A_{nt} \]

- where \(U_{bs} \) is 1 for uniform tensile stress

Other Connections

- seated beam
- continuous
 - beam to column
 - beam to beam

Other Connections

- splices
- rigid frame knees
- gussets & joints
Other Connections

- base plates
 - anchor bolts
 - bearing on steel
 - bending of plate

http://courses.civil.ualberta.ca