concrete construction: T-beams & slabs

T sections
- two areas of compression in moment possible
- one-way joists
- effective flange width

Systems
- beams separate from slab
- beams integral with slab
 - close spaced
- continuous beams
- no beams

T sections
- negative bending: min A_s, larger of:
 \[
 A_s = \frac{6}{f_c} f' (b_w d) \quad A_s = \frac{3}{f_y} f_c (b_d d)
 \]
- effective width (interior)
 - $L/4$
 - $b_w + 16t$
 - center-to-center of beams

Figure 9.5.1 Actual and equivalent stress distribution over flange width.
T sections

- usual analysis steps
 1. assume no compression in web
 2. design like a rectangular beam
 3. needs reinforcement in slab too
 4. also analyze for negative moment, if any

One-Way

- Joists
 - standard stems
 - 2.5” to 4.5” slab
 - ~30” widths
 - reusable forms

One-Way

- Joists
 - wide pans
 - 5’, 6’ up
 - light loads & long spans
 - one-leg stirrups

Compression Reinforcement

- doubly reinforced
- negative bending
- two compression forces
- bigger M_n
- control deflection
- increase ductility
- needs ties because of buckling
Compression Reinforcement

- analysis
 - A_s & A_s'
 - $T = C_c + C_s$
 - $T = A_s f_y$
 - $C_s = A_s (f'_s - 0.85 f'c)$
 - $C_c = 0.85 f'c ba$ with $a = \beta_1 x$
 - f_s' not known, so solve for x (n.a.)
 - $f_s' < f_y$?
 - $M_n = T(d-a/2) + C_s(d-d')$

Slabs

- one way behavior – like beams
- two way behavior – more complex

Slab Design

- one unit wide “strip”
- with uniform loads
 - like “wide” beams
 - moment / unit width
 - uniform curvature
- with point loads
 - resisted by stiffness of adjacent strips
 - more curvature in middle

Slab Design

- min thickness by code
- reinforcement
 - bars, welded wire mesh
 - cover
 - minimum by steel grade
 - 40-50:
 \[\rho = \frac{A_s}{bt} = 0.002 \]
 - 60:
 \[\rho = \frac{A_s}{bt} = 0.0018 \]
One-Way Slabs

- A_s tables
- max spacing
 - $\leq 3(t)$ and 18”
 - $\leq 5(t)$ and 18” – temp & shrinkage steel
- no room for stirrups

<table>
<thead>
<tr>
<th>Bar size</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar spacing (in)</td>
<td>0.22</td>
<td>0.20</td>
<td>0.17</td>
<td>0.15</td>
<td>0.13</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_s (in.2/ft)</td>
<td>0.42</td>
<td>0.40</td>
<td>0.38</td>
<td>0.36</td>
<td>0.34</td>
<td>0.32</td>
<td>0.30</td>
<td>0.29</td>
<td>0.27</td>
<td>0.25</td>
<td>0.23</td>
<td>0.21</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Precast

- prestressed
 - PCI Design Handbook
 - double T’s
 - hollow core
 - L’s
- topping
- load tables