Concrete Construction: Foundation Design

Architectural Structures: Form, Behavior, and Design
ARCH 331
Dr. Anne Nichols
Summer 2014

Lecture Twenty Three

Structural vs. Foundation Design

- **structural design**
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.

- **foundation design**
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a = \frac{q_u}{S.F.}$

Bearing Failure

- shear
Lateral Earth Pressure

- passive vs. active

![Diagram of lateral earth pressure showing active and passive forces](image)

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length
- other materials (piles)
 - steel
 - wood
 - composite

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

• spread footings
• wall footings
• eccentric footings
• combined footings
• unsymmetrical footings
• strap footings

Horizontal Footings

• mat foundations
• retaining walls
• basement walls
• pile foundations
• drilled piers

Shallow Footings

• spread footing
 – a square or rectangular footing supporting a single column
 – reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

• stress distribution is a function of
 – footing rigidity
 – soil behavior

• linear stress distribution assumed

RIGID sand
RIGID clay
Proportioning Footings

- net allowable soil pressure, \(q_{\text{net}} \)
 - \(q_{\text{net}} = q_{\text{allowable}} - h_f (\gamma_c - \gamma_s) \)
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden
- design requirement with total unfactored load:
 \[
P \leq q_{\text{net}}
 \]

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- \(P_u = \) combination of factored \(D, L, W \)
- ultimate strength
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - plain concrete has shear strength
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure

Concrete Spread Footings

- failure modes
 - shear
 - bending

Concrete Spread Footings

- shear failure
 - one way shear
 - two way shear
Over and Under-reinforcement

• reinforcement ratio for bending
 - \(\rho = \frac{A_s}{bd} \)
 - use as a design estimate to find \(A_{s,b,d} \)
 - \(\text{max } \rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)
 - minimum for slabs & footings of uniform thickness
 \(\frac{A_s}{bh} = 0.002 \) grade 40/50 bars
 \(= 0.0018 \) grade 60 bars

Reinforcement Length

• need length, \(\ell_d \)
 - bond
 - development of yield strength

Column Connection

• bearing of column on footing
 - \(P_u \leq \phi P_n = \phi (0.85 f' c A_1) \)
 - \(\phi = 0.65 \) for bearing
 - confined: increase \(x \sqrt{\frac{A_2}{A_1}} \leq 2 \)
• dowel reinforcement
 - if \(P_u > P_b \), need compression reinforcement
 - min of 4 - #5 bars (or 15 metric)

Wall Footings

– continuous strip for load bearing walls
– plain or reinforced
– behavior
 • wide beam shear
 • bending of projection
– dimensions usually dictated by codes for residential walls
– light loads
Eccentrically Loaded Footings

- footings subject to moments

 - soil pressure resultant force may not coincide with the centroid of the footing

\[M = P e \]

- to avoid large rotations, limit the differential soil pressure across footing

- for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Kern Limit

- boundary of e for no tensile stress

- triangular stress block with \(p_{\text{max}} \)

\[\text{volume} = \frac{wpx}{2} = N \]

\[p_{\text{max}} = \frac{2N}{wx} \]

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)
 - ensures stability with respect to overturning

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5 \]

- pressure under toe (maximum) \(\leq q_a \)
- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line
- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid
- strap or cantilever
 - prevents overturning of exterior column
- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_a \]

\[R = P_1 + P_2 \]

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key
Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

Retaining Walls

- procedure
 - proportion and check stability with working loads for bearing, overturning and sliding
 - design structure with factored loads

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2 \]

\[SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2 \]

Retaining Wall Proportioning

- estimate size
 - footing size, \(B \) \(\approx \) 2/5 - 2/3 wall height (H)
 - footing thickness \(\approx \) 1/12 - 1/8 footing size (B)
 - base of stem \(\approx \) 1/10 - 1/12 wall height (H+h_f)
 - top of stem \(\geq \) 12”

Retaining Walls Forces

- design like cantilever beam
 - \(V_u \) & \(M_u \) for reinforced concrete
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure
Retaining Wall Types

- “gravity” wall
 - usually unreinforced
 - economical & simple

- cantilever retaining wall
 - common

Deep Foundations

- usage
 - when spread footings, mats won’t work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations

Deep Foundation Types

- piles - usually driven, 6”-8” φ, 5’ +
 - piers
 - caissons
 - drilled shafts
 - bored piles
 - pressure injected piles

- counterfort wall
 - very tall walls (> 20 - 25 ft)

- buttress wall

- bridge abutment

- basement frame wall (large basement areas)
Deep Foundation Types

- classification
 - by material
 - by shape
 - by function (structural, compaction...)

- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)

- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- end bearing pile (point bearing)
 \[P = A_p \cdot f_a \]
 for use in soft or loose materials over a dense base

- friction piles (floating)
 \[R_s = f(\text{adhesion}) \]
 \[R_p \approx 0 \]

Piles Classified By Function

- combination friction and end bearing

- uplift/tension piles
 structures that float, towers

- batter piles
 angled, cost more, resist large horizontal loads

Piles Classified By Function

- fender piles, dolphins, pile clusters
 large # of piles in a small area

- compaction piles
 • used to densify loose sands

- drilled piers
 • eliminate need for pile caps
 • designed for bearing capacity (not slender)

Pile Caps and Grade Beams

- like multiple column footing

- more shear areas to consider