Masonry Construction: beams & columns

Office Hours

• Masonry Standards Joint Committee
 – ACI, ASCE, TMS
 – ASD (+empirical)
 • linear-elastic stresses
 – LRFD added in 2002
 – referenced by IBC
 – unreinforced allows tension in flexure
 – reinforced - all tension in steel
 – walls are also in compression

Masonry Beam & Wall Design

• reinforcement increases capacity & ductility

Figure 2.10 Reinforced masonry beams and lintels.
Masonry Design

- f_s is not the yield stress
- f_m is the stress in the masonry

\[\rho = \frac{A_s}{bd} \]

Masonry Materials

- units
 - stone, brick, concrete block, clay tile

Masonry Materials

- mortar
 - water, masonry cement, sand, lime
 - types:
 - M higher strength – 2500 psi (ave.)
 - N medium high strength – 1800 psi
 - O medium strength – 750 psi
 - W medium low strength – 350 psi
 - K low strength – 75 psi

Masonry Materials

- rebar
- grout
 - fills voids and fixes rebar
- prisms
 - used to test strength, f_m'
- fire resistant
Masonry Materials

- moisture resistance
 - weathering index for brick
 - bond and detailing
 - expansion or shrinking from water
- provide control joints
- parapets, corners, long walls

Masonry Walls

- tension normal to bed joints
- tension parallel to bed joints

Allowable Masonry Stresses

- tension - unreinforced only
 - Table 2.2.3.2 — Allowable flexural tensile stresses for clay and concrete masonry, psi (MPa)

- flexure
 - $F_D = 1/3 f'_m$ (unreinforced)
 - $F_b = 0.45 f'_m$ (reinforced)

- shear, unreinforced masonry
 - $F_v = 1.5 \sqrt{f'_m} \leq 120$ psi

- shear, reinforced masonry
 - $M/Vd \leq 0.25$: $F_v = 3.0 \sqrt{f'_m}$
 - $M/Vd \geq 1.0$: $F_v = 2.0 \sqrt{f'_m}$
Allowable Reinforcement Stress

- **tension**
 - a) Grade 40 or 50 \(F_s = 20 \text{ ksi} \)
 - b) Grade 60 \(F_s = 32 \text{ ksi} \)
 - c) Wire joint \(F_s = 30 \text{ ksi} \)

- *no allowed increase by 1/3 for combinations with wind & earthquake
 – did before 2011 MSJC code

Reinforcement, \(M_s \)

\[
\Sigma M = A_s f_s = f_m b \frac{kd}{2}
\]

Masonry Lintels

- **distributed load**
 – triangular or trapezoidal

\[
\Sigma M = f_m b \frac{kd}{2} \text{ jd} = 0.5 f_m b d^2 j f_s
\]

if \(f_s = F_s \) (allowable) the moment capacity is limited by the steel

MSJC \(F_b = 0.33 f'_m \)
Strategy for RM Flexural Design

- to size section and find reinforcement
 - find ρ_b knowing f'_m and f_y
 - size section for some $\rho < \rho_b$
 - get k, j
 - $bd^2 = \frac{M}{\rho j F'_s}$
 - get $b & d$ in nice units
 - size reinforcement (bar size & #): $A_s = \frac{M}{F_s j d}$
 - check design: $M_s = A_s F_s j d > M$
 - $f_b = \frac{M}{0.5bd^2 jk} < F_b$

Ultimate Strength Design

- LRFD
- like reinforced concrete
- useful when beam shear is high
- improved inelastic model
 - ex. earthquake loads

Masonry Columns and Pilasters

- must be reinforced

Masonry Columns and Pilasters

- considered a column when $b/t < 3$ and $h/t > 4$
 - b is width of “wall”
 - t is thickness of “wall”
- slender is
 - 8” one side
 - $h/t \leq 25$
- needs ties
- eccentricity may be required
Masonry Columns

- **allowable axial load**
 \[
P_a = \begin{cases}
 0.25 f'_m A_n + 0.65 A_{st} F_s & \text{if } h/r \leq 99 \\
 0.25 f'_m A_n + 0.65 A_{st} \left(\frac{70r^2}{h} \right) & \text{if } h/r > 99
\end{cases}
\]

- \(h = \) effective length
- \(r = \) radius of gyration
- \(A_n = \) effective area of masonry
- \(A_{st} = \) effective area of column reinforcement
- \(F_s = \) allowable compressive stress in column reinforcement

Masonry Walls (unreinforced)

- **allowable axial stresses**
 \[
 F_a = \begin{cases}
 0.25 f'_m \left(1 - \left(\frac{h}{140r} \right)^2 \right) & \text{if } h/r \leq 99 \\
 0.25 f'_m \left(\frac{70r^2}{h} \right) & \text{if } h/r > 99
\end{cases}
\]

Design

- **masonry columns and walls** (unreinforced)
 \[
 \frac{f_a}{F_a} + \frac{f_b}{F_b} \leq 1.0 \quad \text{and} \quad f_b - f_a \leq F_t
\]

 - \(h/r < 99 \)
 \[
 F_a = 0.25 f'_m \left(1 - \left(\frac{h}{140r} \right)^2 \right)
 \]

 - \(h/r > 99 \)
 \[
 F_a = 0.25 f'_m \left(\frac{70r^2}{h} \right)
 \]

 - \(F_b = 0.33 f'_m \)

Design

- **masonry columns and walls - loading**
 - wind loading
 - eccentric axial load
 - “virtual” eccentricity, \(e_1 \)
 \[
 e_1 = \frac{M}{P}
 \]

 virtual eccentricity
Design

- masonry columns and walls – with rebar
 - wall reinforcement usually at center and ineffective in compression
 \[f_a + f_b \leq F_b \] provided \[f_a \leq F_a \]

BENDING STRESS

\[f_{m} = \frac{f_{w}(k_d/2)}{I_{s}} \]

AXIAL STRESS

\[I_{s} = \frac{P}{A} \]

for equilibrium:
\[\sum F = C_{m} - T_{s} \]

Design Steps Knowing Loads

1. assume limiting stress
 - buckling, axial stress, combined stress
2. solve for r, A or S
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Final Exam Material

- my list:
 - systems
 - components & levels
 - design considerations
 - equilibrium - \(\Sigma F & \Sigma M \)
 - supports, trusses, cables, beams, pinned frames, rigid frames
 - materials
 - strain & stress (E), temperature, constraints

Final Exam Material

- my list (continued):
 - beams
 - distributed loads, tributary width, V&M, stresses, design, section properties (I & S), pitch, deflection
 - columns
 - stresses, design, section properties (I & r)
 - frames
 - \(P, V & M, P-\Delta \), effective length with joint stiffness, connection design, tension member design
Final Exam Material

• my list (continued):
 – foundations
 • types
 • sizing & structural design
 • overturning and sliding
 – design specifics
 • steel (ASD & LRFD)
 • concrete
 • wood
 • masonry