Center of Gravity

- location of equivalent weight
- determined with calculus

![Diagram of Center of Gravity](image)

\[W = \int dW \]

Centroid

- “average” x & y of an area
- for a volume of constant thickness
 - \(\Delta W = \gamma \Delta A \) where \(\gamma \) is weight/volume
 - center of gravity = centroid of area

\[
\bar{x} = \frac{\sum (x \Delta A)}{A} \\
\bar{y} = \frac{\sum (y \Delta A)}{A}
\]
Centroid
• for a line, sum up length
\[
\bar{x} = \frac{\sum(x\Delta L)}{L} \\
\bar{y} = \frac{\sum(y\Delta L)}{L}
\]
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table
5. Fill in table
6. Sum necessary columns
7. Calculate \bar{x} and \bar{y}

Area Centroids

- Table 7.1 – pg. 242

<table>
<thead>
<tr>
<th>Shape</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular area</td>
<td>$\frac{b}{3}$</td>
<td>$\frac{A}{3}$</td>
</tr>
<tr>
<td>Quarter-circular area</td>
<td>$\frac{4\pi}{3}$</td>
<td>$\frac{4\pi}{3\pi}$</td>
</tr>
<tr>
<td>Semicircular area</td>
<td>0</td>
<td>$\frac{4\pi}{3\pi}$</td>
</tr>
<tr>
<td>Semiparabolic area</td>
<td>$\frac{3h}{8}$</td>
<td>$\frac{3h}{5}$</td>
</tr>
<tr>
<td>Parabolic area</td>
<td>0</td>
<td>$\frac{3h}{5}$</td>
</tr>
</tbody>
</table>

Moments of Inertia

- 2^{nd} moment area
 - math concept
 - area x (distance)2
- need for behavior of
 - beams
 - columns

- **Moment of Inertia**
 - about any reference axis
 - can be negative

\[
I_y = \int x^2 \, dA \\
I_x = \int y^2 \, dA
\]

- resistance to bending and buckling
Moment of Inertia

- same area moved away a distance
 - larger I

Polar Moment of Inertia

- for roundish shapes
- uses polar coordinates (r and θ)
- resistance to twisting

\[J_o = \int r^2 dA \]

Radius of Gyration

- measure of inertia with respect to area

\[r_x = \sqrt{\frac{I_x}{A}} \]

Parallel Axis Theorem

- can find composite I once composite centroid is known (basic shapes)

\[I_x = I_{cx} + Ad_y^2 \]
\[= \bar{I}_x + Ad_y^2 \]
\[I = \sum \bar{I} + \sum Ad^2 \]
\[\bar{I} = I - Ad^2 \]
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table with A, \bar{x}, \bar{y}, \bar{I}'s, d's, and Ad^2's
5. Fill in table and get \hat{x} and \hat{y} for composite
6. Sum necessary columns
7. Sum I's and Ad^2's

Area Moments of Inertia

- Table 7.2 – pg. 252: (bars refer to centroid)
 - x, y
 - x', y'
 - C

\[\begin{array}{c|c}
\text{Rectangle} & d_x = \hat{x} - \bar{x} \\
\text{Triangle} & d_x = \hat{x} - \bar{x} \\
\text{Circle} & d_y = \hat{y} - \bar{y} \\
\end{array} \]