Beams: bending and shear stress

Beam Bending

- **Galileo**
 - relationship between stress and depth\(^2\)
- can see
 - top squishing
 - bottom stretching
- what are the stress across the section?

Pure Bending

- bending only
- no shear
- axial normal stresses from bending can be found in
 - homogeneous materials
 - plane of symmetry
 - follow Hooke’s law

Bending Moments

- sign convention:
- size of maximum internal moment will govern our design of the section
Normal Stresses

• geometric fit
 – plane sections remain plane
 – stress varies linearly

Neutral Axis

• stresses vary linearly
 • zero stress occurs at the centroid
 • neutral axis is line of centroids (n.a.)

Derivation of Stress from Strain

• pure bending = arc shape

\[L = R\theta \]

\[L_{outside} = (R + y)\theta \]

\[\varepsilon = \frac{\delta}{L} = \frac{L_{outside} - L}{L} = \frac{(R + y)\theta - R\theta}{R\theta} = \frac{y}{R} \]

Derivation of Stress

• zero stress at n.a.

\[f = E\varepsilon = \frac{Ey}{R} \]

\[f_{max} = \frac{Ec}{R} \]

\[f = \frac{y}{c} f_{max} \]
Bending Moment

- resultant moment from stresses = bending moment!

\[M = \sum f_y \Delta A \]

\[= \sum \frac{y f_{max}}{c} y \Delta A = \frac{f_{max}}{c} \sum y^2 \Delta A = \frac{f_{max}}{c} I = f_{max} S \]

Bending Stress Relations

\[\frac{1}{R} = \frac{M}{EI} \]

\[f_b = \frac{My}{I} \]

\[S = \frac{I}{c} \]

curvature general bending stress section modulus

maximum bending stress required section modulus for design

Transverse Loading and Shear

- perpendicular loading
- internal shear
- along with bending moment

Bending vs. Shear in Design

- bending stresses dominate
- shear stresses exist horizontally with shear
- no shear stresses with pure bending
Shear Stresses

- horizontal & vertical

Beam Stresses

- horizontal with bending

Equilibrium

- horizontal force V needed

\[V_{longitudinal} = \frac{V_T Q}{I} \Delta x \]

- Q is a moment area
Moment of Area

• Q is a moment area with respect to the n.a. of area above or below the horizontal

- \(Q_{\text{max}} \) at \(y=0 \) (neutral axis)

- \(q \) is shear flow:
 \[
 q = \frac{V_{\text{longitudinal}}}{\Delta x} = \frac{V I}{I}
 \]

Shearing Stresses

- \(f_v = \frac{V}{\Delta A} = \frac{V}{b \cdot \Delta x} \)
- \(f_{v-\text{ave}} = \frac{VQ}{Ib} \)

- \(f_{v-\text{ave}} = 0 \) on the top/bottom
- \(b \) min may not be with \(Q \) max
- with \(h/4 \geq b, f_{v-\text{max}} \leq 1.008 f_{v-\text{ave}} \)

Rectangular Sections

\[
I = \frac{bh^3}{12} \quad Q = A\bar{y} = bh^2/8
\]

- \(f_v \) = \(\frac{VQ}{Ib} = \frac{3V}{2A} \)

- \(f_{v-\text{max}} \) occurs at n.a.

Steel Beam Webs

- \(W \) and \(S \) sections
 - \(b \) varies

 - stress in flange negligible
 - presume constant stress in web
 \[
 f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}
 \]
Shear Flow
• loads applied in plane of symmetry
• cut made perpendicular
\[q = \frac{VQ}{I} \]

Shear Flow Quantity
• sketch from Q
\[q = \frac{VQ}{I} \]

Connectors Resisting Shear
• plates with
 – nails
 – rivets
 – bolts
• splices

Vertical Connectors
• isolate an area with vertical interfaces
\[nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p \]
Unsymmetrical Shear or Section

- member can bend and twist
 - not symmetric
 - shear not in that plane
- shear center
 - moments balance