Design of Isolated Square and Rectangular Footings (ACI 318-14)

Notation:

- \(a \) = equivalent square column size in spread footing design
- \(b \) = depth of the effective compression block in a concrete beam
- \(A_g \) = gross area, equal to the total area ignoring any reinforcement
- \(A_{req} \) = area required to satisfy allowable stress
- \(A_s \) = area of steel reinforcement in concrete design
- \(A_1 \) = area of column in spread footing design
- \(A_2 \) = projected bearing area of column load in spread footing design
- \(b \) = rectangular column dimension in concrete footing design
- \(b_f \) = width of the flange of a steel or cross section
- \(b_o \) = perimeter length for two-way shear in concrete footing design
- \(B \) = spread footing dimension in concrete design
- \(B_s \) = width within the longer dimension of a rectangular spread footing that reinforcement must be concentrated within for concrete design
- \(c \) = rectangular column dimension in concrete footing design
- \(C \) = dimension of a steel base plate for concrete footing design
- \(d \) = effective depth from the top of a reinforced concrete member to the centroid of the tensile steel
- \(d_b \) = bar diameter of a reinforcing bar
- \(d_f \) = depth of a steel column flange (wide flange section)
- \(f'_c \) = concrete design compressive stress
- \(f_y \) = yield stress or strength
- \(h_f \) = height of a concrete spread footing
- \(l_d \) = development length for reinforcing steel
- \(l_{dc} \) = development length for column
- \(l_{sc} \) = lap splice length in compression for reinforcement
- \(L \) = name for length or span length
- \(L_m \) = projected length for bending in concrete footing design
- \(L' \) = length of the one-way shear area in concrete footing design
- \(M_n \) = nominal flexure strength with the steel reinforcement at the yield stress and concrete at the concrete design strength for reinforced concrete flexure design
- \(M_u \) = maximum moment from factored loads for LRFD beam design
- \(P \) = name for axial force vector
- \(P_{dowels} \) = nominal capacity of dowels from concrete column to footing in concrete design
- \(P_D \) = dead load axial force
- \(P_L \) = live load axial force
- \(P_n \) = nominal column or bearing load capacity in concrete design
- \(P_u \) = factored axial force
- \(q_{allowable} \) = allowable soil bearing stress in allowable stress design
- \(q_{net} \) = net allowed soil bearing pressure
- \(q_u \) = factored soil bearing capacity in concrete footing design from load factors
- \(V_c \) = shear force capacity in concrete
- \(V_n \) = nominal shear force capacity
- \(V_{u1} \) = maximum one-way shear from factored loads for LRFD beam design
- \(V_{u2} \) = maximum two-way shear from factored loads for LRFD beam design
- \(\beta \) = ratio of long side to short side of the column in concrete footing design
- \(\lambda \) = modification factor for lightweight concrete
- \(\phi \) = resistance factor
- \(\gamma_c \) = density or unit weight of concrete
- \(\gamma_s \) = density or unit weight of soil
- \(\rho \) = reinforcement ratio in concrete beam design = \(A_s / b d \)
- \(\psi_c \) = shear strength in concrete design
NOTE: This procedure assumes that the footing is concentrically loaded and carries no moment so that the soil pressure may be assumed to be uniformly distributed on the base.

1) Find service dead and live column loads:
 \[P_D = \text{Service dead load from column} \]
 \[P_L = \text{Service live load from column} \]
 \[P = P_D + P_L \] (typically – see ACI 5.3)

2) Find design (factored) column load, \(P_u \):
 \[P_u = 1.2P_D + 1.6P_L \]

3) Find an approximate footing depth, \(h_f \):
 \[h_f = d + 4'' \] and is usually in multiples of 2, 4 or 6 inches.

 a) For rectangular columns
 \[4d^2 + 2(b + c)d = \frac{P_u}{\phi c} \]

 b) For round columns
 \[d^2 + ad = \frac{P_u}{\phi c} \]
 \[a = \sqrt{\frac{\pi d^2}{4}} \]

 where: \(a \) is the equivalent square column size
 \[\psi_c = 4\lambda \sqrt{f_c} \] for two-way shear
 \[\phi = 0.75 \] for shear
 \[\lambda = 1.0 \] for normalweight concrete

4) Find net allowable soil pressure, \(q_{net} \):
 By neglecting the weight of any additional top soil added, the net allowable soil pressure takes into account the change in weight when soil is removed and replaced by concrete:
 \[q_{net} = q_{allowable} - h_f(\gamma_c - \gamma_s) \]
 where \(\gamma_c \) is the unit weight of concrete (typically 150 lb/ft\(^3\))
 and \(\gamma_s \) is the unit weight of the displaced soil

5) Find required area of footing base and establish length and width:
 \[A_{req} \geq \frac{P}{q_{net}} \]
 For square footings choose \(B \geq \sqrt{A_{req}} \)
 For rectangular footings choose \(B \times L \geq A_{req} \)
6) **Check transfer of load from column to footing:** ACI 16.3

 a) Find load transferred by bearing on concrete in column: ACI 22.8

 basic: \(\phi P_n = 0.85 f'_c A_1 \) where \(\phi = 0.65 \) and \(A_1 \) is the area of the column

 with confinement: \(\phi P_n = 0.85 f'_c A_1 \sqrt{\frac{A_2}{A_1}} \) where \(\sqrt{\frac{A_2}{A_1}} \) cannot exceed 2.

 IF the column concrete strength is lower than the footing, calculate \(\phi P_n \) for the column too.

 b) Find load to be transferred by dowels:

 \(\phi P_{dowels} = P_n - \phi P_n \)

 IF \(\phi P_n \geq P_n \) only nominal dowels are required.

 c) Find required area of dowels and choose bars

 \[\text{Req. dowel } A_y = \frac{\phi P_{dowels}}{\phi f_y} \]

 where \(\phi = 0.65 \) and \(f_y \) is the reinforcement grade

 Choose dowels to satisfy the required area and nominal requirements:

 i) Minimum of 4 bars

 ii) Minimum \(A_y = 0.005 A_g \) ACI 16.3.4.1

 where \(A_g \) is the gross column area

 d) Check dowel embedment into footing for compression: ACI 25.4.9

 \[l_{dc} = \frac{f_y d_b}{50 \lambda \sqrt{f'_c}} \]

 but not less than 0.0003 \(f_y d_b \) or 8” where \(d_b \) is the bar diameter

 NOTE: The footing must be deep enough to accept \(l_{dc} \). Hooks are not considered effective in compression and are only used to support dowels during construction.

 e) Find length of lapped splices of dowels with column bars: ACI 25.5.5

 \(l_{sc} \) is the largest of:

 i) larger of \(l_{dc} \) or 0.0005 \(f_y d_b \) (\(f_y \) of grade 60 or less)

 or smaller bar \((0.0009 f_y - 24) d_b \) (\(f_y \) over grade 60)

 ii) \(l_{dc} \) of larger bar

 iii) not less than 12”

 See ACI 10.7.5 for possible reduction in \(l_{sc} \)
7) Check two-way (slab) shear:

a) Find dimensions of loaded area:

i) For concrete columns, the area coincides with the column area, if rectangular, or equivalent square area if circular (see 3(b))

ii) For steel columns an equivalent loaded area whose boundaries are halfway between the faces of the steel column and the edges of the steel base plate is used: ACI 13.2.7.1

\[b = b_f + \frac{(B - b_f)}{2} \]

where \(b_f \) is the width of column flange and \(B \) is base plate side

\[c = d_f + \frac{(C - d_f)}{2} \]

where \(d_f \) is the depth of column flange and \(C \) is base plate side

b) Find shear perimeter: ACI 22.6.4

Shear perimeter is located at a distance of \(\frac{d}{2} \) outside boundaries of loaded area and length is \(b_v = 2(c + d) + 2(b + d) \)

(average \(d = h_f - 3 \) in. cover – 1 assumed bar diameter)

c) Find factored net soil pressure, \(q_u \):

\[q_u = \frac{P_u}{B^2} \text{ or } \frac{P_u}{B \times L} \]

d) Find total shear force for two-way shear, \(V_{u2} \):

\[V_{u2} = P_u - q_u(c + d)(b + d) \]

e) Compare \(V_{u2} \) to two-way capacity, \(\phi V_n \):

\[V_{u2} \leq \phi \left(2 + \frac{4}{\beta} \right) \lambda \sqrt{f'_c b_o d} \leq \phi 4 \lambda \sqrt{f'_c b_o d} \] ACI 22.6.5.1

where \(\phi = 0.75 \) and \(\beta \) is the ratio of long side to short side of the column

NOTE: This should be acceptable because the initial footing size was chosen on the basis of two-way shear limiting. If it is not acceptable, increase \(h_f \) and repeat steps starting at b).
8) **Check one-way (beam) shear:**

The critical section for one-way shear extends across the width of the footing at a distance d from the face of the loaded area (see 7)a for loaded area). The footing is treated as a cantilevered slab. **ACI 7.4.3.2**

a) **Find projection, L':**

i) For square footing:

$$ L' = \frac{B}{2} - \left(d + \frac{b}{2} \right) $$

where b is the smaller dim. of the loaded area

ii) For rectangular footings:

$$ L' = \frac{L}{2} - \left(d + \frac{\bullet}{2} \right) $$

where \bullet is the dim. parallel to the long side of the footing

b) **Find total shear force on critical section, V_{u1}:**

$$ V_{u1} = BL'q_u $$

c) **Compare V_{u1} to one-way capacity, ϕV_{u}:**

$$ V_{u1} \leq \phi 2\lambda \sqrt{f'c} Bd $$

where $\phi = 0.75$

NOTE: If it is not acceptable, increase h_f.

9) **Check for bending stress and design reinforcement:**

Square footings may be designed for moment in one direction and the same reinforcing used in the other direction. For rectangular footings the moment and reinforcing must be calculated separately in each direction. The critical section for moment extends across the width of the footing at the face of the loaded area. **ACI 13.2.7.1**

a) **Find projection, L_m:**

$$ L_m = \frac{B}{2} - \frac{\bullet}{2} $$

where \bullet is the smaller dim. of column for a square footing. For a rectangular footing, use the value perpendicular to the critical section.

b) **Find total moment, M_u, on critical section:**

$$ M_u = \frac{q_u BL_m^2}{2} $$

(find both ways for a rectangular footing)
c) Find required \(A_s \):

\[
R_s = \frac{M_n}{bd^2} = \frac{M_u}{\phi bd^2}, \quad \text{where} \quad \phi = 0.9, \quad \text{and} \quad \rho \text{ can be found}
\]

from Figure 3.8.1 of Wang & Salmon.

or:

i) guess \(a \)

ii) \(A_s = \frac{0.85 f'ba}{f_y} \)

iii) solve for \(a = 2 \left(d - \frac{M_u}{\phi A_s f_y} \right) \)

iv) repeat from ii) until a converges, solve for \(A_s \)

Minimum \(A_s \)

\[
= 0.0018bh \quad \text{Grade 60 for temperature and shrinkage control}
\]

\[
= 0.002bh \quad \text{Grade 40 or 50}
\]

ACI 7.6.1.1 specifies the requirements of ACI 7.6.4 must be met, and max. spacing of 18”

d) Choose bars:

For square footings use the same size and number of bars uniformly spaced in each
direction (ACI 13.3.2). Note that required \(A_s \) must be furnished in each direction.

For rectangular footings bars in long direction should be uniformly spaced. In the short
direction bars should be distributed as follows (ACI 13.3.3):

i) In a band of width \(B_s \) centered on column:

\[
\text{# bars} = \frac{2}{L/B + 1} \cdot \text{(heights in B)} \quad \text{(integer)}
\]

ii) Remaining bars in short direction should be

uniformly spaced in outer portions of footing.

e) Check development length:

Find required development length, \(l_d \), in tension from
handout or from equations in ACI 25.4. \(l_d \) must be less
than \((L_m - 2”) \) (end cover). If not possible, use more bars of smaller diameter.