Forces and Vectors

Notation:			
F	= name for force vectors, as is <i>A</i> , <i>B</i> , <i>C</i> , <i>T</i> and <i>P</i>	tail	= start of a vector (without arrowhead)
F_x	= force component in the x direction	tip	= direction end of a vector (with
F_{y}	= force component in the y direction		arrowhead)
R	= name for resultant vectors	$\boldsymbol{\mathcal{X}}$	= x axis direction
R_x	= resultant component in the x	У	= y axis direction
	direction	heta	= angle, in a trig equation, ex. $\sin \theta$,
R_y	= resultant component in the y		that is measured between the x axis
	direction		and tail of a vector

Characteristics

• Forces have a point of application – tail of vector

size – units of lb, K, N, kN

direction – to a reference system, sense indicated by an arrow

• Classifications include: Static & Dynamic

• Structural types separated primarily into *Dead Load* and *Live Load* with further identification as wind, earthquake (seismic), impact, etc.

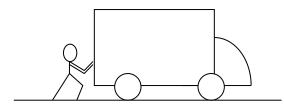
Rigid Body

- *Ideal* material that doesn't deform
- Forces on rigid bodies can be *internal* within or at connections

or external – applied

• Rigid bodies can *translate* (move in a straight line)

or rotate (change angle)

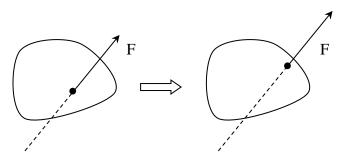


- Weight of truck is external (gravity)
- Push by driver is external
- Reaction of the ground on wheels is external

If the truck moves forward: it translates

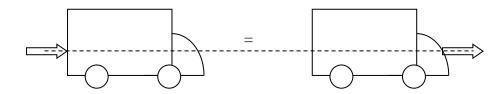
If the truck gets put up on a jack: it rotates

• *Transmissibility:* We can replace a force at a point on a body by that force on another point on the body along the line of action of the force.



External conditions haven't changed

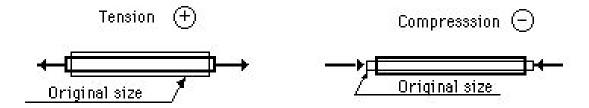
For the truck:



- The same external forces will result in the same conditions for motion
- Transmissibility applies to EXTERNAL forces. INTERNAL forces respond differently when an external force is moved.
- DEFINITION: 2D Structure A structure that is flat and may contain a plane of symmetry. All forces on this structure are in the same plane as the structure.

Internal and External

- Internal forces occur within a member or between bodies within a system
- External forces represent the action of other bodies or gravity on the rigid body



Force System Types

- *Collinear* all forces along the same **line**
- *Coplanar* all forces in the same **plane**
- Space not concurrent or coplanar (all out there in 3 dimensions)

Further classification as

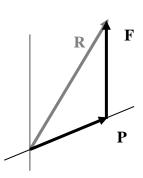
- *Concurrent* all forces go through the same **point**
- *Parallel* all forces are **parallel**

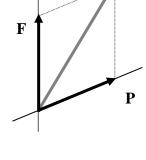
Graphical Addition

• Parallelogram law: when adding two vectors acting at a point, the result the **diagonal** of the parallelogram

t R is

• The *tip-to-tail* method is another graphical way to add vectors.





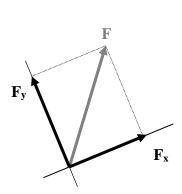
• With **3** (**three**) or more vectors, successive application of the parallelogram law will find the resultant *OR* drawing all the vectors **tip-to-tail** in any order will find the resultant.

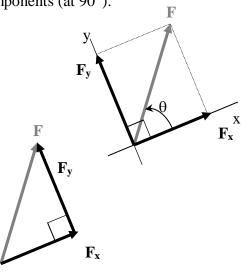
Rectangular Force Components and Addition

• It is convenient to resolve forces into perpendicular components (at 90°).

• Parallelogram law results in a rectangle.

• Triangle rule results in a right triangle.





 θ is: between x & F

 $F_x = F \cdot \cos\theta$

 $F_y = F \cdot \sin\theta$

 $\mathsf{F} = \sqrt{F_x^2 + F_y^2}$

 $tan\theta = \frac{F_y}{F_x}$

 $\begin{cases} \text{magnitudes are } scalar \text{ and can be negative} \\ F_x \& F_y \text{ are } vectors \text{ in } x \text{ and } y \text{ direction} \end{cases}$

When $90^{\circ} < \theta < 270^{\circ}$, F_x is negative

When $180^{\circ} < \theta < 360^{\circ}$, F_y is *negative*

When $0^{\circ} < \theta < 90^{\circ}$ and $180^{\circ} < \theta < 270^{\circ}$, $\tan\theta$ is *positive*

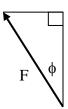
When $90^{\circ} < \theta < 180^{\circ}$ and $270^{\circ} < \theta < 360^{\circ}$, $\tan\theta$ is *negative*

• Addition (analytically) can be done by adding all the x components for a **resultant** x component and adding all the y components for a resultant y component.

$$R_x = \sum F_x$$
, $R_y = \sum F_y$ and $R = \sqrt{R_x^2 + R_y^2}$ $\tan \theta = \frac{R_y}{R_x}$

<u>CAUTION:</u> An interior angle, ϕ , between a vector and *either* coordinate axis can be used in the trig functions. BUT *No sign* will be provided by the trig function, which means **you** must give a sign and determine if the component is in the x or y direction.

For example, $F \sin \phi = opposite$ side, which would be negative in x!



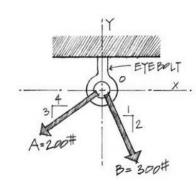
Example 1 (pg 26)

Example Problems: Graphical Addition of Three or More Vectors

2.3 Two cables suspended from an eyebolt carry 200# and 300# loads as shown. Both forces have lines of action that intersect at point O, making this a concurrent force system. Determine the resultant force the eyebolt must resist. Do a graphical solution using a scale of 1'' = 100#.

Steps:

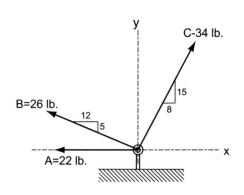
- 1. <u>GIVEN</u>: Write down what's given (drawing and numbers).
- 2. <u>FIND</u>: Write down what you need to find. (resultant graphically)
- 3. SOLUTION:
- 4. Draw the 200 lb and 300 lb forces to scale with tails at O. (If the scale isn't given, you must choose one that fits on your paper, ie. 1 inch =100 lb.)
- 5. Draw parallel reference lines at the ends of the vectors.
- 6. Draw a line from O to the intersection of the reference lines
- 7. Measure the length of the line
- 8. Convert the line length by the scale into pounds (by multiplying by the force measure and dividing by the scale value, ie X inches * 100 lb / 1 inch).
- 9. Measure the angle with respect to the positive x axis.



Alternate solution:

- 4. Draw one vector
- 5. Draw the other vector at the TIP of the first one (away from the tip).
- 6. Draw a line from 0 to the tip of the final vector and continue at step 7

Example 2

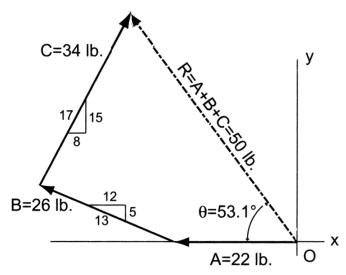


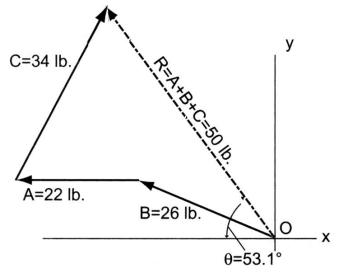
Example Problem

A tent stake is subjected to three pulling forces, as shown in Figure 2.18. Using the graphical tip-to-tail method, determine the resultant of forces *A*, *B*, and *C* (magnitude and direction).

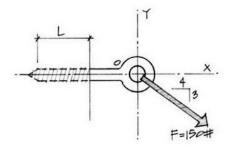
1.5 mm = 1 lb. or 1 mm = 2/3 lb.

Suggested scale: $\frac{1}{8}$ = 1 lb. or 1" = 8 lb.





Example 3 (pg 30)



2.8 A clothesline with a maximum tension of 150# is anchored to a wall by means of an eye screw. If the eye screw is capable of carrying a horizontal pulling force (withdrawal force) of 40# per inch of penetration, how many inches L should the threads be embedded into the wall?

Example 4 (pg 26) Determine the resultant vector analytically with the component method.

This is the same problem as Example Problems 2.3 which was solved earlier using the graphical methods.

