Centers of Gravity - Centroids

Notation:
- \(A \): name for area
- \(C \): designation for channel section
- \(F \): name for centroid
- \(F_z \): force component in the z direction
- \(L \): name for length
- \(O \): name for reference origin
- \(Q_x \): first moment area about an x axis (using y distances)
- \(Q_y \): first moment area about an y axis (using x distances)
- \(t \): name for thickness
- \(t_w \): thickness of web of wide flange
- \(W \): name for force due to weight
- \(W \): designation for wide flange section
- \(x \): horizontal distance
- \(\bar{x} \): the distance in the x direction from a reference axis to the centroid of a shape
- \(\hat{x} \): the distance in the x direction from a reference axis to the centroid of a composite shape
- \(y \): vertical distance
- \(\bar{y} \): the distance in the y direction from a reference axis to the centroid of a shape
- \(\hat{y} \): the distance in the y direction from a reference axis to the centroid of a composite shape
- \(z \): distance perpendicular to x-y plane
- \(\Delta \): symbol for integration
- \(\Delta \): calculus symbol for small quantity
- \(\gamma \): density of a material (unit weight)
- \(\Sigma \): summation symbol

- The cross section shape and how it resists bending and twisting is important to understanding beam and column behavior.

- The center of gravity is the location of the equivalent force representing the total weight of a body comprised of particles that each have a mass gravity acts upon.

Resultant force: Over a body of constant thickness in x and y

\[
\sum F_z = \sum_{i=1}^{n} \Delta W_i = W \quad W = \int dW
\]

Location: \(\bar{x}, \bar{y} \) is the equivalent location of the force \(W \) from all \(\Delta W_i \)'s over all x & y locations (with respect to the moment from each force) from:

\[
\sum M_x = \sum_{i=1}^{n} x_i \Delta W_i = \bar{x}W \quad \bar{x}W = \int xdW \Rightarrow \bar{x} = \frac{\int xdW}{W} \quad \text{OR} \quad \bar{x} = \frac{\Sigma(x\Delta W)}{W}
\]

\[
\sum M_y = \sum_{i=1}^{n} y_i \Delta W_i = \bar{y}W \quad \bar{y}W = \int ydW \Rightarrow \bar{y} = \frac{\int ydW}{W} \quad \text{OR} \quad \bar{y} = \frac{\Sigma(y\Delta W)}{W}
\]
• The **centroid of an area** is the average x and y locations of the area particles

For a discrete shape (ΔA_i) of a uniform thickness and material, the weight can be defined as:

$$\Delta W_i = \gamma t \Delta A_i$$

where:

- γ is weight per unit **volume** (= specific weight) with units of N/m^3 or lb/ft^3
- $t\Delta A_i$ is the volume

So if $W = \gamma A$:

$$\bar{x}_A \gamma A = \int x \gamma dA \Rightarrow \bar{x}A = \int x dA \text{ OR } \bar{x} = \frac{\sum(x\Delta A)}{A} \text{ and similarly } \bar{y} = \frac{\sum(y\Delta A)}{A}$$

Similarly, for a line with constant cross section, a ($\Delta W_i = \gamma a \Delta L_i$):

$$\bar{x}L = \int xdL \text{ OR } \bar{x} = \frac{\sum(x\Delta L)}{L} \text{ and } \bar{y}L = \int ydL \text{ OR } \bar{y} = \frac{\sum(y\Delta L)}{L}$$

- \bar{x}, \bar{y} with respect to an x, y coordinate system is the centroid of an area AND the center of **gravity** for a body of uniform material and thickness.

• The **first moment of the area** is like a force moment: and is the area multiplied by the perpendicular distance to an axis.

$$Q_x = \int y dA = \bar{y}A \quad Q_y = \int x dA = \bar{x}A$$
Centroids of Common Shapes

Centroids of Common Shapes of Areas and Lines

<table>
<thead>
<tr>
<th>Shape</th>
<th>(\bar{x})</th>
<th>(\bar{y})</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular area</td>
<td>(\frac{b}{3})</td>
<td>(\frac{h}{3})</td>
<td>(\frac{bh}{2})</td>
</tr>
<tr>
<td>Quarter-circular area</td>
<td>(\frac{4r}{3\pi})</td>
<td>(\frac{4r}{3\pi})</td>
<td>(\frac{\pi r^2}{4})</td>
</tr>
<tr>
<td>Semicircular area</td>
<td>0</td>
<td>(\frac{4r}{3\pi})</td>
<td>(\frac{\pi r^2}{2})</td>
</tr>
<tr>
<td>Semiparabolic area</td>
<td>(\frac{3a}{8})</td>
<td>(\frac{3h}{5})</td>
<td>(\frac{2ah}{3})</td>
</tr>
<tr>
<td>Parabolic area</td>
<td>0</td>
<td>(\frac{3h}{5})</td>
<td>(\frac{4ah}{3})</td>
</tr>
<tr>
<td>Parabolic span-drel</td>
<td>(\frac{3a}{4})</td>
<td>(\frac{3h}{10})</td>
<td>(\frac{ah}{3})</td>
</tr>
<tr>
<td>Circular sector</td>
<td>(\frac{2r \sin \alpha}{3\alpha})</td>
<td>0</td>
<td>(ar^2)</td>
</tr>
<tr>
<td>Quarter-circular arc</td>
<td>(\frac{2r}{\pi})</td>
<td>(\frac{2r}{\pi})</td>
<td>(\frac{\pi r}{2})</td>
</tr>
<tr>
<td>Semicircular arc</td>
<td>0</td>
<td>(\frac{2r}{\pi})</td>
<td>(\pi r)</td>
</tr>
<tr>
<td>Arc of circle</td>
<td>(\frac{r \sin \alpha}{\alpha})</td>
<td>0</td>
<td>(2ar)</td>
</tr>
</tbody>
</table>
• Symmetric Areas

- An area is symmetric with respect to a line when every point on one side is mirrored on the other. The line divides the area into equal parts and the centroid will be on that axis.

- An area can be symmetric to a center point when every \((x,y)\) point is matched by a \((-x,-y)\) point. It does not necessarily have an axis of symmetry. The center point is the centroid.

- If the symmetry line is on an axis, the centroid location is on that axis (value of 0). With double symmetry, the centroid is at the intersection.

- Symmetry can also be defined by areas that match across a line, but are \(180^\circ\) to each other.

Basic Steps

1. Draw a reference origin.

2. Divide the area into basic shapes

3. Label the basic shapes (components)

4. Draw a table with headers of \(\text{Component}, \text{Area}, \bar{x}, \bar{x}A, \bar{y}, \bar{y}A\)

5. Fill in the table value

6. Draw a summation line. Sum all the areas, all the \(\bar{x}A\) terms, and all the \(\bar{y}A\) terms

7. Calculate \(\hat{x}\) and \(\hat{y}\)

• Composite Shapes

If we have a shape made up of basic shapes that we know centroid locations for, we can find an “average” centroid of the areas.

\[
\hat{x}A = \hat{x} \sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \bar{x}_i A_i \\
\hat{y}A = \hat{y} \sum_{i=1}^{n} A_i = \sum_{i=1}^{n} \bar{y}_i A_i
\]

OR

\[
\hat{x} = \frac{\sum \bar{x} A}{A} \quad \hat{y} = \frac{\sum \bar{y} A}{A}
\]

Centroid values can be negative.

Area values can be negative (holes)
Example 1 (pg 243)

Example Problem 7.1: Centroids (Figures 7.5 and 7.6)

Determine the centroidal x and y distances for the composite area shown. Use the lower left corner of the trapezoid as the reference origin.

<table>
<thead>
<tr>
<th>Component</th>
<th>Area (ΔA) (in.2)</th>
<th>\bar{x} (in.)</th>
<th>$\bar{x}\Delta A$ (in.3)</th>
<th>\bar{y} (in.)</th>
<th>$\bar{y}\Delta A$ (in.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>$\frac{9'(3')}{2} = 13.5$ in.2</td>
<td>$6'$</td>
<td>81 in.3</td>
<td>$4'$</td>
<td>54 in.3</td>
</tr>
<tr>
<td>(b)</td>
<td>$9'(3') = 27$ in.2</td>
<td>$4.5'$</td>
<td>121.5 in.3</td>
<td>$1.5'$</td>
<td>40.5 in.3</td>
</tr>
<tr>
<td></td>
<td>$A = \sum \Delta A = 40.5$ in.2</td>
<td></td>
<td>$\sum \bar{x}\Delta A = 202.5$ in.3</td>
<td></td>
<td>$\sum \bar{y}\Delta A = 94.5$ in.3</td>
</tr>
</tbody>
</table>

$$\bar{x} = \frac{202.5\text{in.}^3}{40.5\text{in.}^2} = 5\text{in.}$$

$$\bar{y} = \frac{94.5\text{in.}^3}{40.5\text{in.}^2} = 2.33\text{in.}$$

Example 2 (pg 245)

Example Problem 7.3b (Figure 7.13)

An alternate method that can be employed in solving this problem is referred to as the negative area method.

A 6" thick concrete wall panel is precast to the dimensions as shown. Using the lower left corner as the reference origin, determine the center of gravity (centroid) of the panel.