Table of Reference Figures and Charts

- **Framing System Selection Chart** .. Note Set 2.1, pg. 37
- **Design Criteria Summary Chart** .. Note Set 2.1, pg. 38
- **Common Span Lengths & Depths by System** Note Set 2.2, pg. 49
- **Common Span Lengths & Depths for Timber** Note Set 2.2, pg. 50
- **Common Span Lengths & Depths for Reinforced Concrete** Note Set 2.2, pg. 51
- **Common Span Lengths & Depths for Steel** Note Set 2.2, pg. 52
- **Coefficients of Friction** ... Note Set 4.1, pg. 82
- **Reactions and Support Conditions** .. Note Set 5.1, pg. 100
- **Elastic Moduli of Selected Materials** ... Note Set 6.2, pg. 121
- **Beam Diagrams and Formulas** (for various static loading conditions) ... Note Set 8.2, pg. 163-169
- **Centroids of Common Shapes** .. Note Set 9.1, pg. 173
- **Geometric Properties of Areas** .. Note Set 9.2, pg. 180
- **Alignment Chart for Effective Length of Columns in Continuous Frames** .. Note Set 12.1, pg. 206
- **Theoretical and Recommended Effective Length Factors** Note Set 12.2, pg. 215
- **Minimum Concentrated Loads (from ASCE 7)** Note Set 13.1, pg. 230
- **Minimum Uniformly Distributed Loads (from ASCE 7)** Note Set 13.1, pg. 231-233
- **Building Material Weights** ... Note Set 13.1, pg. 234-235
- **Minimum Uniformly Distributed Live Loads, \(L_o \), and Minimum Concentrated Live Loads** (from International Building Code) .. Note Set 13.2, pg. 237
- **Live Load Element Factor, \(K_{LL} \)** .. Note Set 13.2, pg. 237
- **Ground Snow Loads, \(p_s \), for the United States** Note Set 13.2, pg. 240
- **Deflection Limits (from International Building Code)** Note Set 13.2, pg. 242
- **Design Wind Pressures (Method 2)** .. Note Set 13.3, pg. 243-245
- **Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads** .. Note Set 13.3, pg. 246
- **Basic Wind Speeds for Occupancy Category II Buildings and Other Structures** .. Note Set 13.3, pg. 247
- **Earthquake Ground Motion, 0.2 Second Spectral Response** Note Set 13.4, pg. 249
- **Load Duration Factor, \(C_D \)** .. Note Set 15.1, pg. 277
Common Allowable Deflection Limits .. Note Set 15.1, pg. 279
Common Allowable Deflection Limits .. Note Set 15.2, pg. 301
Beam Design Flow Chart .. Note Set 15.2, pg. 305
Common Allowable Deflection Limits .. Note Set 18, pg. 312
Minimum Size of Fillet Welds ... Note Set 18, pg. 327
Available Strength of Fillet Welds .. Note Set 18, pg. 327
Alignment Chart for Effective Length of Columns in Continuous Frames ... Note Set 18, pg. 330
Listing of W Shapes in Descending order of Zx for Beam Design Note Set 18, pg. 349-350
Available Critical Stress, ϕF_{cr}, for Compression Members Note Set 18, pg. 351-352
Available Shear Strength of Bolts (Table 7-1) Note Set 18, pg. 353
Available Tensile Strength of Bolts (Table 7-2) Note Set 18, pg. 353
Available Shear Strength of Slip-Critical Connections (Table 7-3) ... Note Set 18, pg. 354
Available Bearing Strength at Bolt Holes Based on Bolt Spacing (Table 7-4) ... Note Set 18, pg. 354
Available Bearing Strength at Bolt Holes Based on Edge Distance ... Note Set 18, pg. 355
Beam Design Flow Chart for Steel .. Note Set 18, pg. 357
ASTM Standard Reinforcing Bars ... Note Set 22.1, pg. 364
Maximum Reinforcement Ratio ρ .. Note Set 22.1, pg. 366
Strength Curves (R_n vs ρ) for singly reinforced rectangular sections ... Note Set 22.1, pg. 366
Minimum Thickness of Nonprestressed Beams or One-way Slabs unless Deflections are Computed (Table 7.3.1.1) Note Set 22.1, pg. 368
ACI Provisions for Shear Design (Table 3-8) Note Set 22.1, pg. 370
Alignment Chart for Effective Length of Columns in Continuous Frames ... Note Set 22.1, pg. 374
Factored Moment Resistance of Concrete Beams, ϕM_n with $f'_c = 4$ ksi, $f_y = 60$ ksi ... Note Set 22.1, pg. 397
Column Interaction Diagrams .. Note Set 22.1, pg. 398-399
Beam / One-Way Slab Design Flow Chart .. Note Set 22.1, pg. 400-401
Steel Reinforcement Information ... Note Set 22.2, pg. 403-405
Coefficients for Rectangular Bars in Torsion (Table 3.1)..............Note Set 24, pg. 408
Moment and Shear Coefficients for Continuous Beams and One-Way Slabs
..Note Set 25.1, pg. 412
Thickness and Cover Requirements for Fire Protection..............Note Set 25.2, pg. 413
Openings Permitted in Slab Systems without Beams...............Note Set 25.3, pg. 416
Average Bearing Capacities of Various Foundation Beds (Table 7-1)
..Note Set 27.1, pg. 419
Allowable Flexural Tensile Stresses for Clay and Concrete Masonry
..Note Set 28.1, pg. 439
Minimum Development Lengths for Reinforced Brick Masonry Beams (Table 1)
..Note Set 28.2, pg. 445
Design Curves for Masonry Beams ..Note Set 28.2, pg. 447-451
Section Properties for Concrete Masonry Walls.............................Note Set 28.3, pg. 453-454
Allowable Flexural Tensile Stresses for Clay and Concrete Masonry (Table 1)
..Note Set 28.3, pg. 455