Advanced Beam Analysis

Notation:

- I = moment of inertia with respect to neutral axis bending
- L = beam span length
- M = internal bending moment
- n = relative location of the load on a span
- P = name for a force vector
- R = name for reaction force vector
- w = name for distributed load
- Σ = summation symbol

Statically indeterminate beams have more unknowns than equations provided by statics. But by adding more restraints, the deflections are significantly impacted.

This means that the maximum moment, if the beam was statically determinate with simple supports, can be said to be redistributed between positive and negative moments (which means the absolute value of the moments sum).

Approximate Analysis Methods

There are analysis methods based on the way the structure deforms which assume where the inflection points (having zero moment) may be. These inflection points are treated as hinges.

For example, the following beam has supports that aren’t entirely rigid, so the inflection points can be assumed to be closer to the supports than a rigidly supported beam (see Beam Diagrams and Formulas). Statics is used to isolate the center span, find the support forces reactions that end up as loads on the remaining bodies.
Analysis Methods

There are two general methods for analysis of statically indeterminate structures; the force or flexibility method, and the stiffness or displacement method.

- **Force Method** – The method obtains additional equations from writing equations that satisfy compatibility (consistent displacements) and force-displacement requirements. The *Theorem of Three Moments* is a force method.

- **Displacement Method** – The method is based on writing force-displacement relations for the members and then satisfying the equilibrium requirements for the structures. The unknowns are the displacements. Matrix methods use this format, as do most computer programs (like Multiframe3D).

Theorem of Three Moments

The general three-moment equation applies to continuous beams of constant section, the supports either being unyielding or settling* by known amounts. It gives a relationship between the moments at three adjacent supports, in terms of the loading on the two associated spans.

General relation for fixed supports: (*The settling equation has more terms.*)

$$M_1 \frac{L_1}{I_1} + 2M_2 \left(\frac{L_1}{I_1} + \frac{L_2}{I_2} \right) + M_3 \frac{L_2}{I_2} = -\sum \frac{P_1 L_1^2}{I_1} (n_1 - n_1^3) - \sum \frac{P_2 L_2^2}{I_2} (n_2 - n_2^3) - \frac{w_1 L_1^3}{4I_1} - \frac{w_2 L_2^3}{4I_2}$$

where:
- M_1 is the bending moment at the left support of the two spans
- M_2 is the bending moment at the center support of the two spans
- M_3 is the bending moment at the right support of the two spans
- L_1 is the length of the left span
- L_2 is the length of the right span
- I_1 is the moment of inertia of the left span
- I_2 is the moment of inertia of the right span
- P_1 is the concentrated load on the left span
- P_2 is the concentrated load on the right span
- n_1 is the relative location of the concentrated load on the left span with respect to the span length
- n_1 is the relative location of the concentrated load on the left span with respect to the span length

For spans with only distributed loading AND constant moment of inertia ($I_1 = I_2$), the general equation becomes:

$$M_1 L_1 + 2M_2 (L_1 + L_2) + M_3 L_2 = -\frac{w_1 L_1^3}{4} - \frac{w_2 L_2^3}{4}$$
For spans with only concentrated loading AND constant moment of inertia \((I_1 = I_2)\), the general equation becomes:

\[
M_1L_1 + 2M_2(L_1 + L_2) + M_3L_2 = -\sum P_iL_i^3(n_i - n_i^3) - \sum P_iL_i^3(n_2 - n_2^3)
\]

Continuous Beams with Two Spans and Symmetrical Loading

With symmetrical loading, the center support of a two equal-span continuous beam acts like a fixed support preventing any rotation and displacement. We can treat one span like a beam fixed at one end, supported at the other and use beam formulas and diagrams.
Example 1 (pg 128)

Example 18. Construct the shear and moment diagrams for the beam in Figure 3.28.