Elements of Architectural Structures: Form, Behavior, and Design
ARCH 614
Dr. Anne Nichols
Spring 2014

Lecture Thirteen

Wood Construction: Materials & Beams
Wood Beam Design

- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined in 2005)
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:

\[f_b \leq F'_b = F_b \times \left(\text{product of adjustment factors} \right) \]
Timber

- lightweight : strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives
Wood Properties

- cell structure and density

[Images showing softwood and hardwood]

http://www.swst.org/teach/set2/struct1.html
Wood Properties

• moisture
 – exchanges with air easily
 – excessive drying causes warping and shrinkage
 – strength varies some

• temperature
 – steam
 – volatile products
 – combustion

http://www.swst.org/teach/set2/struct1.html
Wood Properties

• load duration
 – short duration
 • higher loads
 – normal duration
 • > 10 years

• creep
 – additional deformation with no additional load
Structural Lumber

- **dimension** – 2 x’s (nominal)
- **beams, posts, timber, planks**
- **grading**
 - select structural
 - no. 1, 2, & 3
- **tabular values**
 by species
- **glu-lam**
- **plywood**

<table>
<thead>
<tr>
<th>Species and commercial grade</th>
<th>Size classification</th>
<th>Single-member uses</th>
<th>Repetitive-member uses</th>
<th>Design values in pounds per square inch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Extreme fiber in bending “F_b”</td>
<td>Tension parallel to grain “F_t”</td>
<td>Horizontal shear “F_V”</td>
</tr>
<tr>
<td>SOUTHERN PINE (Surfaced dry, Used at 19% max. m.c.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Structural</td>
<td></td>
<td>2000</td>
<td>2300</td>
<td>1150</td>
</tr>
<tr>
<td>Dense Select Structural</td>
<td></td>
<td>2250</td>
<td>2700</td>
<td>1350</td>
</tr>
<tr>
<td>No. 1</td>
<td></td>
<td>1700</td>
<td>1950</td>
<td>1000</td>
</tr>
<tr>
<td>No. 1 Dense</td>
<td>2” to 4” thick</td>
<td>2000</td>
<td>2300</td>
<td>1150</td>
</tr>
<tr>
<td>No. 2</td>
<td>2” to 4” wide</td>
<td>1400</td>
<td>1650</td>
<td>825</td>
</tr>
<tr>
<td>No. 2 Dense</td>
<td></td>
<td>1650</td>
<td>1900</td>
<td>975</td>
</tr>
<tr>
<td>No. 3</td>
<td></td>
<td>775</td>
<td>900</td>
<td>450</td>
</tr>
<tr>
<td>No. 3 Dense</td>
<td></td>
<td>925</td>
<td>1050</td>
<td>525</td>
</tr>
<tr>
<td>Stud</td>
<td></td>
<td>775</td>
<td>900</td>
<td>450</td>
</tr>
<tr>
<td>Construction</td>
<td>2” to 4” thick</td>
<td>1000</td>
<td>1150</td>
<td>600</td>
</tr>
<tr>
<td>Standard</td>
<td>2” to 4” wide</td>
<td>575</td>
<td>675</td>
<td>50</td>
</tr>
<tr>
<td>Utility</td>
<td></td>
<td>275</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>Select Structural</td>
<td></td>
<td>1750</td>
<td>2000</td>
<td>1150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1750</td>
<td>2000</td>
<td>1150</td>
</tr>
</tbody>
</table>
Adjustment Factors

- **terms**
 - \(C_D \) = load duration factor
 - \(C_M \) = wet service factor
 - 1.0 dry \(\leq \) 16% MC
 - \(C_F \) = size factor
 - visually graded sawn lumber and round timber > 12” depth

\[
C_F = \left(\frac{12}{d} \right)^{\frac{1}{9}} \leq 1.0
\]

Table 5.2 (pg 177)
Adjustment Factors

- **terms**
 - C_{fu} = flat use factor
 - not decking
 - C_{i} = incising factor
 - increase depth for pressure treatment
 - C_{t} = temperature factor
 - lose strength at high temperatures
Adjustment Factors

• terms
 – $C_r = \text{repetitive member factor}$
 – $C_H = \text{shear stress factor}$
 • splitting
 – $C_V = \text{volume factor}$
 • same as C_F for glue laminated timber
 – $C_L = \text{beam stability factor}$
 • beams without full lateral support
 – $C_C = \text{curvature factor for laminated arches}$
Allowable Stresses

- design values
 - F_b: bending stress
 - F_t: tensile stress
 - F_v: horizontal shear stress
 - $F_{c\perp}$: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain)
 - E: modulus of elasticity
 - F_p: bearing stress (parallel to grain)
Load Combinations

• design loads, take the bigger of
 – \(\text{(dead loads)}/0.9 \)
 – \(\text{(dead loads + any possible combination of live loads)}/C_D \)

• deflection limits
 – no load factors
 – for stiffer members:
 • \(\Delta_T \text{ max from } LL + 0.5(DL) \)
Beam Design Criteria

• strength design
 – bending stresses predominate
 – shear stresses occur

• serviceability
 – limit deflection and cracking
 – control noise & vibration
 – no excessive settlement of foundations
 – durability
 – appearance
 – component damage
 – ponding
Beam Design Criteria

- superpositioning
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

- Total Equiv. Uniform Load \(= \frac{wL}{2} \)
- \(R = V \) \(= \frac{wL}{2} \)
- \(V_x = w \left(\frac{L}{2} - x \right) \)
- \(M_{\text{max.}} \) (at center) \(= \frac{wL^2}{8} \)
- \(M_x = \frac{wL}{2} (L - x) \)
- \(\Delta_{\text{max.}} \) (at center) \(= \frac{wL^4}{384EI} \)
- \(\Delta_x = \frac{wL}{24EI} (L^2 - 2x^2 + x^3) \)
Deflection Limits

- **based on service condition, severity**

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y
Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{\text{req'd}}$ \((f_b \leq F_b) \)

4. Determine section size

\[
S = \frac{bh^2}{6}
\]
Beam Design

4*. Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design

6. Evaluate shear stresses - horizontal

• \((f_v \leq F_v)\)

• W and rectangles

\[f_{v_{\text{max}}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}} \]

• general

\[f_{v_{\text{max}}} = \frac{VQ}{Ib} \]
Beam Design

7. Provide adequate bearing area at supports

\[f_p = \frac{P}{A} \leq F_p \]
Beam Design

8. Evaluate torsion

\[(f_v \leq F_v)\]

- circular cross section

\[f_v = \frac{T\rho}{J}\]

- rectangular

\[f_v = \frac{T}{c_1ab^2}\]

<table>
<thead>
<tr>
<th>(a/b)</th>
<th>(c_1)</th>
<th>(c_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Beam Design

9. Evaluate deflections

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Joists & Rafters

- allowable load tables
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings

![Diagram of Joists & Rafters]

TABLE 5.5 Allowable Spans in Feet and Inches for Floor Joists

<table>
<thead>
<tr>
<th>Joint Size</th>
<th>Spacing (in)</th>
<th>Spacing (mm)</th>
<th>Modulus of Elasticity, E, in 1,000,000 psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 6</td>
<td>12.0</td>
<td>10-0</td>
<td>13-6</td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>11-12</td>
<td>14-2</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>12-3</td>
<td>15-4</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>13-6</td>
<td>16-8</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>14-10</td>
<td>17-12</td>
</tr>
<tr>
<td>2 x 8</td>
<td>12.0</td>
<td>13-2</td>
<td>14-6</td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>14-0</td>
<td>15-2</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>15-3</td>
<td>16-4</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>16-6</td>
<td>17-8</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>17-10</td>
<td>18-12</td>
</tr>
<tr>
<td>2 x 10</td>
<td>12.0</td>
<td>14-5</td>
<td>15-9</td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>15-8</td>
<td>17-8</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>16-3</td>
<td>18-10</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>17-11</td>
<td>19-12</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>18-10</td>
<td>20-12</td>
</tr>
<tr>
<td>2 x 12</td>
<td>12.0</td>
<td>15-6</td>
<td>16-8</td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>16-9</td>
<td>18-8</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>18-6</td>
<td>20-8</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>19-11</td>
<td>21-12</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>20-12</td>
<td>22-12</td>
</tr>
<tr>
<td>Fb</td>
<td>12.0</td>
<td>1,043</td>
<td>1,092</td>
</tr>
<tr>
<td></td>
<td>14.0</td>
<td>1,148</td>
<td>1,202</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>1,220</td>
<td>1,277</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>1,314</td>
<td>1,376</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>1,376</td>
<td>1,430</td>
</tr>
</tbody>
</table>

DESIGN CRITERIA:
Deflection — For 40 psf (192 kN/m²) live load, limited to span in inches (mm) divided by 360.
Strength — Live load of 40 psf (192 kN/m²) plus dead load of 10 psf (48 kN/m²) determines the

Wood Beams 23
Lecture 13
Elements of Architectural Structures
ARCH 614
S2014abn
Engineered Wood

• plywood
 – veneers at different orientations
 – glued together
 – split resistant
 – higher and uniform strength
 – limited shrinkage and swelling
 – used for sheathing, decking, shear walls, diaphragms
Engineered Wood

• glued-laminated timber
 – glulam
 – short pieces glued together
 – straight or curved
 – grain direction parallel
 – higher strength
 – more expensive than sawn timber
 – large members (up to 100 feet!)
 – flexible forms
Engineered Wood

- **I sections**
 - beams

- **other products**
 - pressed veneer strip panels (Parallam)

- **wood fibers**
 - Hardieboard: cement & wood
Timber Elements

• stressed-skin elements
 – modular built-up “plates”
 – typically used for floors or roofs

Figure 1. Typical Two-Sided Stressed-Skin Panel
Timber Elements

• built-up box sections
 – built-up beams
 – usually site-fabricated
 – bigger spans
Timber Elements

• trusses
 – long spans
 – versatile
 – common in roofs
Timber Elements

- folded plates and arch panels
 - usually of plywood
Timber Elements

• arches and lamellas
 – arches commonly laminated timber
 – long spans
 – usually only for roofs
Approximate Depths

![Diagram of approximate depths for timber systems]

Approximate depths

- **Planking:** $L/25-L/35$
- **Joists:** $L/18-L/20$
- **Stressed-skin panels:** $L/24-L/30$
- **Laminated beams:** $L/18-L/20$
- **Box beams:** $L/18-L/20$
- **Trussed rafters:** $L/5-L/7$
- **Open-web joists:** $L/18-L/20$
- **Flat trusses:** $L/10-L/15$
- **Shaped trusses:** $L/7-L/10$
- **Plywood folded plates:** $L/7-L/12$
- **Laminated arches:** $L/4-L/6$

FIGURE 15–3 Approximate span ranges for timber systems.

Key:
- Minimum span
- Possible span range
- Maximum span
- Typical span for member
- Typical member length