wood construction: materials & beams
Wood Beam Design

• National Design Specification
 – National Forest Products Association
 – ASD & LRFD (combined in 2005)
 – adjustment factors x tabulated stress = allowable stress
 – adjustment factors terms, C with subscript
 – i.e, bending:

\[f_b \leq F'_b = F_b \times (\text{product of adjustment factors}) \]
Timber

- lightweight : strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives
Wood Properties

- cell structure and density

http://www.swst.org/teach/set2/struct1.html
Wood Properties

• moisture
 – exchanges with air easily
 – excessive drying causes warping and shrinkage
 – strength varies some

• temperature
 – steam
 – volatile products
 – combustion

http://www.swst.org/teach/set2/struct1.html
Wood Properties

• load duration
 – short duration
 • higher loads
 – normal duration
 • > 10 years

• creep
 – additional deformation with no additional load
Structural Lumber

- **dimension** – 2 x’s (nominal)
- **beams, posts, timber, planks**
- **grading**
 - select structural
 - no. 1, 2, & 3
- **tabular values**
 by species
- **glu-lam**
- **plywood**
Adjustment Factors

- **terms**
 - $C_D = \text{load duration factor}$
 - $C_M = \text{wet service factor}$
 - $1.0 \text{ dry } \leq 16\% \text{ MC}$
 - $C_F = \text{size factor}$
 - visually graded sawn lumber and round timber $> 12''$ depth

\[
C_F = \left(\frac{12}{d} \right)^{\frac{1}{9}} \leq 1.0
\]

Table 5.2 (pg 177)
Adjustment Factors

- **terms**
 - $C_{fu} = \text{flat use factor}$
 - not decking
 - $C_i = \text{incising factor}$
 - increase depth for pressure treatment
 - $C_t = \text{temperature factor}$
 - lose strength at high temperatures
Adjustment Factors

- **terms**
 - $C_r = \text{repetitive member factor}$
 - $C_H = \text{shear stress factor}$
 - splitting
 - $C_V = \text{volume factor}$
 - same as C_F for glue laminated timber
 - $C_L = \text{beam stability factor}$
 - beams without full lateral support
 - $C_C = \text{curvature factor for laminated arches}$
Allowable Stresses

• design values
 – F_b: bending stress
 – F_t: tensile stress
 – F_v: horizontal shear stress
 – $F_{c\perp}$: compression stress (perpendicular to grain)
 – F_c: compression stress (parallel to grain)
 – E: modulus of elasticity
 – F_p: bearing stress (parallel to grain)
Load Combinations

• **design loads, take the bigger of**
 – $(\text{dead loads})/0.9$
 – $(\text{dead loads} + \text{any possible combination of live loads})/C_D$

• **deflection limits**
 – **no load factors**
 – for stiffer members:
 • $\Delta_T \text{ max from } \text{LL} + 0.5(\text{DL})$
Beam Design Criteria

- **strength design**
 - bending stresses predominate
 - shear stresses occur

- **serviceability**
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding
Beam Design Criteria

- superpositioning
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)
Deflection Limits

- based on service condition, severity

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y
Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{req'd}$ ($f_b \leq F_b$)

4. Determine section size

$$S = \frac{bh^2}{6}$$
Beam Design

4*. Include self weight for M_{max}
 – and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
6. Evaluate shear stresses - horizontal

\(f_v \leq F_v \)

- **W and rectangles**
 \[
 f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}
 \]

- **general**
 \[
 f_{v-\text{max}} = \frac{VQ}{Ib}
 \]
7. Provide adequate bearing area at supports

\[f_p = \frac{P}{A} \leq F_p \]
Beam Design

8. Evaluate torsion

\[(f_v \leq F_v)\]

- circular cross section
 \[f_v = \frac{T\rho}{J}\]
- rectangular
 \[f_v = \frac{T}{c_1 ab^2}\]

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

<table>
<thead>
<tr>
<th>a/b</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>∞</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Beam Design

9. Evaluate deflections

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Joists & Rafters

- allowable load tables
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings
LRFD

- factored loads & reduced nominal capacity

\[M_u = \gamma_D M_D + \gamma_L M_L \leq \phi_b M_n \]

\(\phi \) - Resistance factor

\(\gamma \) - Load factor for (D)ead & (L)ive load

- nominal adjusted – no \(C_D \)

\[M_n = F_{bn} \times S \]

\[F'_{bn} = F_{bn} (\phi_b \lambda)(\text{product of adjustment factors}) \]

\[F_{bn} = F_b \times K_F \ (\text{conversion factor}) \]
Engineered Wood

• plywood
 – veneers at different orientations
 – glued together
 – split resistant
 – higher and uniform strength
 – limited shrinkage and swelling
 – used for sheathing, decking, shear walls, diaphragms
Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

• I sections
 – beams

• other products
 – pressed veneer strip panels (Parallam)

• wood fibers
 – Hardieboard: cement & wood
Timber Elements

• stressed-skin elements
 – modular built-up “plates”
 – typically used for floors or roofs
Timber Elements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans
Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs
Timber Elements

• folded plates and arch panels
 – usually of plywood
Timber Elements

• arches and lamellas
 – arches commonly laminated timber
 – long spans
 – usually only for roofs
Approximate Depths

![Diagram showing approximate depths for various structural elements such as planking, joists, stressed-skin panels, laminated beams, box beams, trussed rafters, open-web joists, flat trusses, shaped trusses, plywood folded plates, and laminated arches. The diagram also includes a key for understanding the minimum, possible span range, and maximum span.](image-url)