Elements of Architectural Structures: Form, Behavior, and Design
ARCH 614
Dr. Anne Nichols
Spring 2014

Lecture fifteen

Wood construction: connections
Connectors

• joining
 – lapping
 – interlocking
 – butting

• mechanical
 – “third-elements”

• transfer load at a point, line or surface
 – generally more than a point due to stresses
Wood Connectors

• adhesives
 – used in a controlled environment
 – can be used with nails

• mechanical
 – bolts
 – lag bolts or lag screws
 – nails
 – split ring and shear plate connectors
 – timber rivets
Wood Connections

- mechanical
Bolted Joints

- connected members in tension cause shear stress

- connected members in compression cause bearing stress
Tension Members

- members with holes have reduced area
- increased tension stress
- \(A_e \) is effective net area

\[
f_t = \frac{P}{A_e} \left(\text{or} \frac{T}{A_e} \right)
\]
Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too
Single Shear

- seen when 2 members are connected

\[
f_v = \frac{P}{A} = \frac{P}{\pi \frac{d^2}{4}}
\]

(a) Two steel plates bolted using one bolt.

(b) Elevation showing the bolt in shear.

\[f_v = \text{Average shear stress through bolt cross section}
\]

\[A = \text{Bolt cross-sectional area}
\]

\[f_v = \frac{P}{A}
\]

Figure 5.11 A bolted connection—single shear.
Double Shear

- seen when 3 members are connected

\[\Sigma F = 0 = -P + 2\left(\frac{P}{2}\right) \]

\[f_v = \frac{P}{2A} = \frac{P}{2} = \frac{P}{2} \pi \frac{d^2}{4} \]

Free-body diagram of middle section of the bolt in shear.
Figure 5.12 A bolted connection in double shear.
Bearing Stress

- compression & contact
- stress limited by species & grain direction to load
- projected area

\[f_p = \frac{P}{A_{\text{projected}}} = \frac{P}{td} \]
Bolted Joints

• twisting

• tear out
 – shear strength
 – end distance & spacing

Figure 1.—Higher connection capacities can be achieved with increased fastener spacings.

Taylor & Line 2002

www.timber.org.au
Nailed Joints

- tension stress (pullout)
- shear stress nails presumed to share load by distance from centroid of nail pattern
Nailed Joints

- sized by pennyweight units / length
- embedment length
- dense wood, more capacity

*NDS

<table>
<thead>
<tr>
<th>Side Member Thickness, t_s (in.)</th>
<th>Nail Length, L (in.)</th>
<th>Nail Diameter, D (in.)</th>
<th>Pennyweight</th>
<th>Load per Nail for Douglas Fir-Larch $G = 0.50, Z$ (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Plywood Side Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{3}{8}$</td>
<td>2</td>
<td>0.113</td>
<td>6d</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2$\frac{1}{2}$</td>
<td>0.131</td>
<td>8d</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.148</td>
<td>10d</td>
<td>76</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>2</td>
<td>0.113</td>
<td>6d</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2$\frac{1}{2}$</td>
<td>0.131</td>
<td>8d</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.148</td>
<td>10d</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>3$\frac{1}{2}$</td>
<td>0.162</td>
<td>16d</td>
<td>92</td>
</tr>
</tbody>
</table>
Connectors Resisting Beam Shear

- plates with
 - nails
 - rivets
 - bolts
- splices
- V from beam load related to $V_{\text{longitudinal}}$

\[
\frac{V_{\text{longitudinal}}}{p} = \frac{VQ}{I} \quad \text{and} \quad nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p
\]
Vertical Connectors

- isolate an area with vertical interfaces

\[n F_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p \]