concrete construction:
flat spanning systems
Reinforced Concrete Design

- economical & common
- resist lateral loads
Reinforced Concrete Design

- **flat plate**
 - 5”-10” thick
 - simple formwork
 - lower story heights

- **flat slab**
 - same as plate
 - 2 ¼”–8” drop panels
Reinforced Concrete Design

- **beam supported**
 - slab depth ~ $L/20$
 - 8”–60” deep

- **one-way joists**
 - 3”–5” slab
 - 8”–20” stems
 - 5”-7” webs
Reinforced Concrete Design

• **two-way joist**
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs

• **beam supported slab**
 - 5”-10” slabs
 - taller story heights
Reinforced Concrete Design

• simplified frame analysis
 – strips, like continuous beams

• moments require flexural reinforcement
 – top & bottom
 – both directions of slab
 – continuous, bent or discontinuous
Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - \(w_u\) from combos
 - uniform loads with \(L/D \leq 3\)
 - \(l_n\) is clear span (+M) or average of adjacent clear spans (-M)

Figure 2-2 Conditions for Analysis by Coefficients (ACI 8.3.3)
Reinforced Concrete Design

Figure 2-3 Positive Moments—All Cases

Figure 2-4 Negative Moments—Beams and Slabs
Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads
Shear in Concrete

- critical section at $d/2$ from
 - column face, column capital or drop panel
Shear in Concrete

- at columns with waffle slabs
Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase
General Beam Design

- f'_c & f_y needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - $b:h$ of 1:1.5-1:2.5
 - b_w & b_f for T
 - to fit reinforcement + stirrups

- slab design, t
 - deflection control & shear

\[
S = \frac{bh^2}{6}
\]
General Beam Design (cont’d)

• custom design:
 – longitudinal steel
 – shear reinforcement
 – detailing

![Diagram of beam design with labels for longitudinal steel, shear reinforcement, and detailing.]