混凝土结构：平面布设系统

http://nisee.berkeley.edu/godden
Reinforced Concrete Design

- economical & common
- resist lateral loads
Reinforced Concrete Design

• **flat plate**
 - 5”-10” thick
 - simple formwork
 - lower story heights

• **flat slab**
 - same as plate
 - 2 ¼”–8” drop panels
Reinforced Concrete Design

• beam supported
 – slab depth ~ L/20
 – 8”–60” deep

• one-way joists
 – 3”–5” slab
 – 8”–20” stems
 – 5”–7” webs
Reinforced Concrete Design

- **two-way joist**
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs

- **beam supported slab**
 - 5”-10” slabs
 - taller story heights
Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams

- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous
Reinforced Concrete Design

• one-way slabs (wide beam design)
 – approximate analysis for moment & shear coefficients
 – two or more spans
 – ~ same lengths
 – \(w_u \) from combos
 – uniform loads with \(L/D \leq 3 \)
 – \(\ell_n \) is clear span (+M) or average of adjacent clear spans (-M)

Figure 2-2 Conditions for Analysis by Coefficients (ACI 8.3.3)
Reinforced Concrete Design

Figure 2-3 Positive Moments—All Cases

Figure 2-4 Negative Moments—Beams and Slabs
Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads
Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel
Shear in Concrete

• at columns with waffle slabs
Openings in Slabs

- **careful placement of holes**
- shear strength reduced
- bending & deflection can increase

Figure 18-11 Openings in Slab Systems without Beams
General Beam Design

- \(f_c' \) & \(f_y \) needed
- usually size just \(b \) & \(h \)
 - even inches typical (forms)
 - similar joist to beam depth
 - \(b:h \) of 1:1.5-1:2.5
 - \(b_w \) & \(b_f \) for \(T \)
 - to fit reinforcement + stirrups
- slab design, \(t \)
 - deflection control & shear

\[
S = \frac{b h^2}{6}
\]
General Beam Design (cont’d)

- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing