Elements of Architectural Structures: Form, Behavior, and Design
ARCH 614
DR. ANNE NICHOLS
Spring 2015

Lecture twenty five

Concrete construction: columns & frames
Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f'_c
Columns Reinforcement

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (#5 bars minimum: 4 with ties, 5 with spiral)
Slenderness

- effective length in monolithic with respect to stiffness of joint: Ψ & k
- not slender when
 \[\frac{kL_u}{r} < 22 \]
Effective Length (revisited)

- relative rotation

\[\Psi = \frac{\sum EI}{l_c} \div \frac{\sum EI}{l_b} \]
Column Behavior

Figure 13.3.2 Spirally reinforced column behavior. (Courtesy of Portland Cement Association.)

Figure 13.3.3 Tied column behavior. (Courtesy of Portland Cement Association.)
Column Design

- $\phi_c = 0.65$ for ties, $\phi_c = 0.75$ for spirals
- P_o – no bending
 \[P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st} \]
- $P_u \leq \phi_c P_n$
 - ties: $P_n = 0.8P_o$
 - spiral: $P_n = 0.85P_o$

- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress
Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection ($P-\Delta$)

Figure 10.6 Considerations for development of bending in steel columns; (a) bending induced by eccentric load, (b) bending transferred to column in a rigid frame, and (c) combined loading condition, separately producing axial compression and bending.
Columns with Bending

- For ultimate strength behavior, ultimate strains can’t be exceeded
 - Concrete 0.003
 - Steel $\frac{f_y}{E_s}$

- P reduces with M
Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below f_y
- plot interaction diagram

Figure 5-3 Transition Stages on Interaction Diagram
Design Methods

• calculation intensive
 – handbook charts
 – computer programs
Design Considerations

- **bending at both ends**
 - $P \Delta$ maximum
- **biaxial bending**
- **walls**
 - unit wide columns
 - “deep” beam shear
- **detailing**
 - shorter development lengths
 - dowels to footings