Elements of Architectural Structures: Form, Behavior, and Design

ARCH 614

Dr. Anne Nichols
Spring 2016

Lecture twenty five

Concrete construction: columns & frames
Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f'_c
Columns Reinforcement

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (4 bars minimum)
Slenderness

- **effective length in monolithic with respect to stiffness of joint:** Ψ & k

- **not slender when**

\[
\frac{kL_{u}}{r} < 22\] *not braced*

Cast-in-place Concrete Column/Beam Connection.

Note: Overlapping steel reinforcement makes assembly monolithic.

Figure 5-7: Column Tie Details
Effective Length (revisited)

- relative rotation

\[\Psi = \frac{\sum EI/l_c}{\sum EI/l_b} \]
Column Behavior

Figure 13.3.2 Spirally reinforced column behavior. (Courtesy of Portland Cement Association.)

Figure 13.3.3 Tied column behavior. (Courtesy of Portland Cement Association.)
Column Design

- $\phi_c = 0.65$ for ties, $\phi_c = 0.75$ for spirals
- P_o – no bending
 \[P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st} \]
- $P_u \leq \phi_c P_n$
 - ties: $P_n = 0.8P_o$
 - spiral: $P_n = 0.85P_o$
- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress
Columns with Bending

• eccentric loads can cause moments
• moments can change shape and induce more deflection \((P-\Delta)\)
Columns with Bending

- for ultimate strength behavior, ultimate strains can’t be exceeded
 - concrete 0.003
 - steel $\frac{f_y}{E_s}$

- P reduces with M

Figure 13.6.1 Typical strength interaction diagram for axial compression and bending moment about one axis. Transition zone is where $\varepsilon_d \leq \varepsilon_t \leq 0.005$.
Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below f_y
- plot interaction diagram

Figure 5-3 Transition Stages on Interaction Diagram
Design Methods

- calculation intensive
 - handbook charts
 - computer programs
Design Considerations

- **bending at both ends**
 - $P - \Delta_{\text{maximum}}$

- **biaxial bending**

- **walls**
 - unit wide columns
 - “deep” beam shear

- **detailing**
 - shorter development lengths
 - dowels to footings