concrete construction: foundation design
Foundation

- the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock
Structural vs. Foundation Design

• structural design
 – choice of materials
 – choice of framing system
 – uniform materials and quality assurance
 – design largely independent of geology, climate, etc.
Structural vs. Foundation Design

• foundation design
 – cannot specify site materials
 – site is usually predetermined
 – framing/structure predetermined
 – site geology influences foundation choice
 – no site the same
 – no design the same

Suggested drill pattern for soil borings
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior
Soil Properties & Mechanics

- **compressibility**
 - settlements

- **strength**
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a = \frac{q_u}{S.F.}$
Soil Properties & Mechanics

- **strength, \(q_a \)**

![Table 1804.3: Presumptive Loadbearing Values of Foundation Materials](image)

Table 1804.3

<table>
<thead>
<tr>
<th>Class of material</th>
<th>Loadbearing pressure (pounds per square foot) (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crystalline bedrock</td>
<td>12,000</td>
</tr>
<tr>
<td>2. Sedimentary rock</td>
<td>6,000</td>
</tr>
<tr>
<td>3. Sandy Gravel</td>
<td>5,000</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty gravel and clayey gravel</td>
<td>3,000</td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay & clayey silt</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Note a. 1 psf = 47.9 Pa.

Figure 2.5

Presumptive surface bearing values of various soils, as given in the BOCA National Building Code/1996. *(Reproduced by permission)*
Bearing Failure

- shear

slip zone

punched wedge
Lateral Earth Pressure

• passive vs. active

(active) (trying to move wall)

(passive) (resists movement)
Foundation Materials

• concrete, plain or reinforced
 – shear
 – bearing capacity
 – bending
 – embedment length, development length

• other materials (piles)
 – steel
 – wood
 – composite
Basic Foundation Requirements

• safe against instability or collapse
• no excessive/damaging settlements
• consider environment
 – frost action
 – shrinkage/swelling
 – adjacent structure, property lines
 – ground water
 – underground defects
 – earthquake
• economics
Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Figure 5.1 Spread footing shapes and dimensions.
Types of Foundations

- mat foundations
- retaining walls
- basement walls
- pile foundations
- drilled piers
Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand
Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

- linear stress distribution assumed

RIGID sand

RIGID clay
Proportioning Footings

- **net allowable soil pressure, \(q_{net} \)**
 - \(q_{net} = q_{allowable} - h_f (\gamma_c - \gamma_s) \)
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden

- **design requirement with total unfactored load:**
 \[
 \frac{P}{A} \leq q_{net}
 \]
Concrete Spread Footings

• plain or reinforced
• ACI specifications
• $P_u = \text{combination of factored } D, L, W$
• ultimate strength
 – $V_u \leq \phi V_c : \phi = 0.75 \text{ for shear}$
 • plain concrete has shear strength
 – $M_u \leq \phi M_n : \phi = 0.9 \text{ for flexure}$
Concrete Spread Footings

• failure modes

Figure 9.2 “Shear” failure in a spread footing loaded in a laboratory (Talbot, 1913). Observe how this failure actually is a combination of tension and shear.

shear

bending

Figure 9.3 Flexural failure in a spread footing loaded in a laboratory (Talbot, 1913).
Concrete Spread Footings

- shear failure

one way shear

two way shear
Over and Under-reinforcement

• reinforcement ratio for bending

\[\rho = \frac{A_s}{bd} \]

– use as a design estimate to find \(A_s, b, d \)

– max \(\rho \) from \(\varepsilon_{steel} \geq 0.004 \)

– minimum for slabs & footings of uniform thickness

\[\frac{A_s}{bh} = 0.002 \text{ grade 40/50 bars} \]

\[= 0.0018 \text{ grade 60 bars} \]
Reinforcement Length

- need length, \(\ell_d \)
 - bond
 - development of yield strength
Column Connection

- bearing of column on footing
 - \(P_u \leq \phi P_n = \phi (0.85 f'_c A_1) \)
 - \(\phi = 0.65 \) for bearing
 - confined: increase \(x \sqrt{\frac{A_2}{A_1}} \leq 2 \)

- dowel reinforcement
 - if \(P_u > P_b \), need compression reinforcement
 - min of 4 - #5 bars (or 15 metric)
Wall Footings

– continuous strip for load bearing walls
– plain or reinforced
– behavior
 • wide beam shear
 • bending of projection
– dimensions usually dictated by codes for residential walls
– light loads
Eccentrically Loaded Footings

- footings subject to moments

\[M = Pe \]

- soil pressure resultant force may not coincide with the centroid of the footing
Differential Soil Pressure

– to avoid large rotations, limit the differential soil pressure across footing

– for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement
Kern Limit

- boundary of e for no tensile stress
- triangular stress block with p_{max}

\[\text{volume} = \frac{wpx}{2} = N \]

\[p_{\text{max}} = \frac{2N}{wx} \]
Guidelines

– want resultant of load from pressure inside the middle third of base (kern)
 • ensures stability with respect to overturning

\[
SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5
\]

– pressure under toe (maximum) ≤ \(q_a \)
– shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line
- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise
Combined Footing Types

- rectangular
- trapezoid

- strap or cantilever
 - prevents overturning of exterior column

- raft/mat
 - more than two columns over an extended area
Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_a \]
Retaining Walls

• purpose
 – retain soil or other material

• basic parts
 – wall & base
 – additional parts
 • counterfort
 • buttress
 • key
Retaining Walls

• considerations
 – overturning
 – settlement
 – allowable bearing pressure
 – sliding
 – (adequate drainage)
Retaining Walls

- procedure
 - proportion and check stability with working loads for bearing, overturning and sliding
 - design structure with factored loads

\[
SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2
\]

\[
SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2
\]
Retaining Wall Proportioning

• **estimate size**
 - **footing size, B** \(\approx \frac{2}{5} - \frac{2}{3} \) wall height \((H) \)
 - **footing thickness** \(\approx \frac{1}{12} - \frac{1}{8} \) footing size \((B) \)
 - **base of stem** \(\approx \frac{1}{10} - \frac{1}{12} \) wall height \((H+h_f) \)
 - **top of stem** \(\geq 12” \)
Retaining Walls Forces

- design like cantilever beam
 - V_u & M_u for reinforced concrete
 - $V_u \leq \phi V_c : \phi = 0.75$ for shear
 - $M_u \leq \phi M_n : \phi = 0.9$ for flexure

Figure 24.12 Typical loading diagrams for stem design: (a) with no surcharge loads; (b) with uniform surcharge load; (c) with point surcharge load.
Retaining Wall Types

- **“gravity” wall**
 - usually unreinforced
 - economical & simple

- **cantilever retaining wall**
 - common
Retaining Wall Types

- **counterfort wall**
- **buttress wall**
- **bridge abutment**
- **basement frame wall** (large basement areas)

Very tall walls (> 20 - 25 ft)
Deep Foundations

- **usage**
 - when spread footings, mats won’t work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations
Deep Foundation Types

- piles - usually driven, 6”-8” φ, 5’ +
- piers
- caissons
- drilled shafts
- bored piles
- pressure injected piles

Drilled, excavated, concreted (with or without steel)
2.5’ - 10’/12’ φ
Deep Foundation Types

- Cross section of plain pipe pile
 - Shell thickness 8–12
 - 300–900 dia.
- Cross section of pipe pile with steel core
- End closure may be omitted
 - Socket required for vertical high loads only
- Typical combinations
 - Cased or uncased concrete
 - Concrete filled steel shell
 - Timber
 - Steel pipe, concrete filled
 - Taper may be omitted
- Typical cross sections
 - 300–600 mm
 - 300–600 diam.
 - Note: reinforcing may be prestressed
 - 300–1400 diam.
 - Sides straight or tapered
 - Typical cross section
 - Corrugated shell
 - Thickness 10 ga to 24 ga

- Butt diameter
 - 300–500 mm
- Pile may be treated with wood preservative
 - Cross section
 - Tip diameter 150–250
- Rail or sheet pile sections can be used as shown below:
 - Welded
 - Rail
- Typical cross section
 - 300–450 mm diameter
- Typical cross section (fluted shell)
 - 250–900 dia.
 - Shell thickness 3–8
- Typical cross section (spiral welded shell)
 - Minimum tip diameter 200
- Pedestal may be omitted
Deep Foundations

• classification
 – by material
 – by shape
 – by function (structural, compaction...)

• pile placement methods
 – driving with pile hammer (noise & vibration)
 – driving with vibration (quieter)
 – jacking
 – drilling hole & filling with pile or concrete
Piles Classified By Material

- **timber**
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)

- **concrete**
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling
Piles Classified By Material

• steel
 – rolled HP shapes or pipes
 – pipes may be filled with concrete
 – HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

– end bearing pile (point bearing)

- soft or loose layer
- “socketed”

\[P_a = A_p \cdot f_a \]

for use in soft or loose materials over a dense base

\[R_p \]

– friction piles (floating)

\[R_s = f(\text{adhesion}) \]

\[R_p \approx 0 \]

common in both clay & sand

tapered: sand & silt
Piles Classified By Function

- combination friction and end bearing

- uplift/tension piles
 structures that float, towers

- batter piles
 angled, cost more, resist large horizontal loads
Piles Classified By Function

– fender piles, dolphins, pile clusters

large # of piles in a small area

– compaction piles
 • used to densify loose sands

– drilled piers
 • eliminate need for pile caps
 • designed for bearing capacity (not slender)
Pile Caps and Grade Beams

- like multiple column footing
- more shear areas to consider