Concrete Construction: Foundation Design
Foundation

- the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock
Structural vs. Foundation Design

- **structural design**
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.
Structural vs. Foundation Design

- foundation design
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior
Soil Properties & Mechanics

- compressibility
 - settlements

- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, \(q_u \)
 - allowable bearing capacity, \(q_a = \frac{q_u}{S.F.} \)
Soil Properties & Mechanics

- strength, q_a

Table 1804.3

<table>
<thead>
<tr>
<th>Class of material</th>
<th>Loadbearing pressure (pounds per square foot)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crystalline bedrock</td>
<td>12,000</td>
</tr>
<tr>
<td>2. Sedimentary rock</td>
<td>6,000</td>
</tr>
<tr>
<td>3. Sandy Gravel</td>
<td>5,000</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty gravel and clayey gravel</td>
<td>3,000</td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay & clayey silt</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Note a. 1 psf = 47.9 Pa.

Figure 2.5
Presumptive surface bearing values of various soils, as given in the BOCA National Building Code/1996. (Reproduced by permission)
Bearing Failure

• shear

slip zone

punched wedge
Lateral Earth Pressure

- passive vs. active

- active (trying to move wall)

- passive (resists movement)
Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length

- other materials (piles)
 - steel
 - wood
 - composite
Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics
Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Figure 5.1 Spread footing shapes and dimensions.
Types of Foundations

- mat foundations
- retaining walls
- basement walls
- pile foundations
- drilled piers
Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand
Actual vs. Design Soil Pressure

• stress distribution is a function of
 – footing rigidity
 – soil behavior

• linear stress distribution assumed
Proportioning Footings

• net allowable soil pressure, q_{net}

 $q_{net} = q_{allowable} - h_f (\gamma_c - \gamma_s)$

 – considers all extra weight (overburden)
 from replacing soil with concrete

 – can be more overburden

• design requirement with total unfactored load:

 $\frac{P}{A} \leq q_{net}$
Concrete Spread Footings

- plain or reinforced
- ACI specifications
- \(P_u = \text{combination of factored } D, L, W \)
- ultimate strength
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - plain concrete has shear strength
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure
Concrete Spread Footings

- failure modes

Figure 9.2 “Shear” failure in a spread footing loaded in a laboratory (Talbot, 1913). Observe how this failure actually is a combination of tension and shear.

shear

Figure 9.3 Flexural failure in a spread footing loaded in a laboratory (Talbot, 1913).

bending
Concrete Spread Footings

- shear failure

one way shear
two way shear
Over and Under-reinforcement

- reinforcement ratio for bending

 \[\rho = \frac{A_s}{bd} \]

 - use as a design estimate to find \(A_s, b, d \)

 - \(\max \rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)

 - minimum for slabs & footings of uniform thickness
 \[\frac{A_s}{bh} = 0.002 \text{ grade } 40/50 \text{ bars} \]
 \[= 0.0018 \text{ grade } 60 \text{ bars} \]
Reinforcement Length

• need length, ℓ_d
 – bond
 – development of yield strength
Column Connection

- **bearing of column on footing**
 - $P_u \leq \phi P_n = \phi \left(0.85 f'_c A_1\right)$
 - $\phi = 0.65$ for bearing
 - confined: increase $x \frac{\sqrt{A_2}}{A_1} \leq 2$

- **dowel reinforcement**
 - if $P_u > P_b$, need compression reinforcement
 - min of 4 bars and $0.005A_g$
Wall Footings

– continuous strip for load bearing walls
– plain or reinforced
– behavior
 • wide beam shear
 • bending of projection
– dimensions usually dictated by codes for residential walls
– light loads
Eccentrically Loaded Footings

- footings subject to moments

By statics:

- soil pressure resultant force may not coincide with the centroid of the footing
Differential Soil Pressure

– to avoid large rotations, limit the differential soil pressure across footing

– for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement
Kern Limit

- boundary of e for no tensile stress
- triangular stress block with p_{max}

\[
\text{volume} = \frac{wp_x}{2} = N
\]

\[
\begin{align*}
\text{Max} \, P & = \frac{2N}{wx} \\
\end{align*}
\]
Guidelines

- want resultant of load from pressure inside the middle third of base (kern)
 - ensures stability with respect to overturning

\[
SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5
\]

- pressure under toe (maximum) ≤ \(q_a\)
- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line

- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise
Combined Footing Types

- rectangular
- trapezoid

- strap or cantilever
 - prevents overturning of exterior column

- raft/mat
 - more than two columns over an extended area
Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_a \]
Retaining Walls

• purpose
 – retain soil or other material

• basic parts
 – wall & base
 – additional parts
 • counterfort
 • buttress
 • key
Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

![Diagram of retaining walls with mechanisms: Overturning, Sliding, Undermining.](image)
Retaining Walls

- **procedure**
 - proportion and check stability with working loads for bearing, overturning and sliding
 - design structure with factored loads

\[
\begin{align*}
SF &= \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2 \\
SF &= \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2
\end{align*}
\]
Retaining Wall Proportioning

• estimate size
 – footing size, $B \approx 2/5 - 2/3$ wall height (H)
 – footing thickness $\approx 1/12 - 1/8$ footing size (B)
 – base of stem $\approx 1/10 - 1/12$ wall height ($H+h_f$)
 – top of stem $\geq 12”$
Retaining Walls Forces

- **design like cantilever beam**
 - \(V_u \) & \(M_u \) for reinforced concrete
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure

![Figure 24.12](image-url)

Figure 24.12 Typical loading diagrams for stem design: (a) with no surcharge loads; (b) with uniform surcharge load; (c) with point surcharge load.
Retaining Wall Types

- “gravity” wall
 - usually unreinforced
 - economical & simple

- cantilever retaining wall
 - common
Retaining Wall Types

- **counterfort wall**
- **buttress wall**
- **bridge abutment**
- **basement frame wall** (large basement areas)

very tall walls (> 20 - 25 ft)
Deep Foundations

• usage
 – when spread footings, mats won’t work
 – when they are required to transfer the structural loads to good bearing material
 – to resist uplift or overturning
 – to compact soil
 – to control settlements of spread or mat foundations
Deep Foundation Types

- **piles** - usually driven, 6”-8” φ, 5’ +
- **piers**
- **caissons**
- **drilled shafts**
- **bored piles**
- **pressure injected piles**

Deep Foundation Types (cont.)

- **drilled, excavated, concreted** (with or without steel)
- **2.5’ - 10’/12’ φ**
Deep Foundation Types

- Grade 200–900 mm
 - Cross section of plain pipe pile
 - Shell thickness 8–12
 - 300–900 dia.
 - Cross section of pipe pile with steel core
 - End closure may be omitted
 - Socket required for vertical high loads only

- Typical combinations
 - Cased or uncased concrete
 - Timber
 - Steel pipe concrete filled
 - Concrete filled steel shell

- 300–600 mm
 - Note: reinforcing may be prestressed
 - 300–1400 diam.

- Grade
 - 200–450 diameter
 - Cross section
 - Corrugated shell thickness 10 ga to 24 ga

- Pile may be treated with wood preservative
- Tip diameter 150–250
- Rail
- Welded
- Sheet pile

- Typical cross section
 - Rails or sheet pile sections can be used as shown below:
- Welded tapered

- Typical cross section
 - Fluted shell
 - 250–900 dia.
 - Shell thickness 3–8

- Typical cross section
 - Minimum tip diameter 200

- Typical cross section
 - Pedestal may be omitted
Deep Foundations

• classification
 – by material
 – by shape
 – by function (structural, compaction...)

• pile placement methods
 – driving with pile hammer (noise & vibration)
 – driving with vibration (quieter)
 – jacking
 – drilling hole & filling with pile or concrete
Piles Classified By Material

• **timber**
 – use for temporary construction
 – to densify loose sands
 – embankments
 – fenders, dolphins (marine)

• **concrete**
 – precast: ordinary reinforcement or prestressed
 – designed for axial capacity and bending with handling
Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- **end bearing pile (point bearing)**

 \[P_a = A_p \cdot f_a \]

 for use in soft or loose materials over a dense base

 - soft or loose layer
 - “socketed”

 \[R_p \]

- **friction piles (floating)**

 common in both clay & sand

 \[R_s = f(\text{adhesion}) \]

 \[R_p \approx 0 \]

 tapered: sand & silt

 \[P \]

 \[N \]

 \[T \]
Piles Classified By Function

- combination friction and end bearing

- **uplift/tension piles**
 - structures that float, towers

- **batter piles**
 - angled, cost more, resist large horizontal loads
Piles Classified By Function

– fender piles, dolphins, pile clusters

 large # of piles in a small area

– compaction piles
 - used to densify loose sands

– drilled piers
 - eliminate need for pile caps
 - designed for bearing capacity (not slender)
Pile Caps and Grade Beams

- like multiple column footing
- more shear areas to consider