Elements of Architectural Structures: Form, Behavior, and Design
ARCH 614
Dr. Anne Nichols
Spring 2015

Lecture Three

Equilibrium

and planar trusses
Equilibrium

- balanced
- steady
- resultant of forces on a particle is 0
Equilibrium on a Point

- analytically

\[R_x = \sum F_x = 0 \]
\[R_y = \sum F_y = 0 \]

- Newton convinces us it will stay at rest
Equilibrium on a Point

• collinear force system
 – ex: cables

\[\sum F_{\text{in-line}} = 0 \]

\[
\begin{align*}
R_x &= \sum F_x = 0 \\
R_y &= \sum F_y = 0
\end{align*}
\]
Equilibrium on a Point

- concurrent force system
 - ex: cables

\[
R_x = \sum F_x = 0
\]

\[
R_y = \sum F_y = 0
\]
Free Body Diagram

- **FBD (sketch)**
- **tool to see all forces on a body or a point including**
 - external forces
 - weights
 - force reactions
 - internal forces
Free Body Diagram

- determine point
- FREE it from:
 - ground
 - supports & connections
- draw all external forces acting ON the body
 - reactions (supporting forces)
 - applied forces
 - gravity

Sign suspended from a strut and cable.

FBD of concurrent point B.

\[\text{FBD of concurrent point B.} \]

\[\text{Sign suspended from a strut and cable.} \]
Free Body Diagram

• sketch FBD with relevant geometry
• resolve each force into components
 – known & unknown angles – name them
 – known & unknown forces – name them
• are any forces related to other forces?
• for the unknowns
• write only as many equilibrium equations as needed
• solve up to 2 equations
Free Body Diagram

• solve equations
 – most times 1 unknown easily solved
 – plug into other equation(s)

• common to have unknowns of
 – force magnitudes
 – force angles
Force Reactions

- result of applying force
- unknown size
- connection or support type
 - known direction
 - related to motion prevented

no vertical motion
no translation
Friction

- resistance to movement
- contact surfaces determine μ
- proportion of normal force (⊥)
 - opposite to slide direction
 - static > kinetic

$$F = \mu N$$
Cable Reactions

- **equilibrium:**
 - more reactions (4) than equations
 - *but, we have slope relationships*
 - *x component the same everywhere*
Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter, Rogers 1986
Patcenter, Rogers 1986

- column free space
- roof suspended
- solid steel ties
- steel frame supports masts
Patcenter, Rogers 1986

- dashes – cables pulling

Figure 3.5: Patcenter, load path diagram.
Truss Structures

• ancient (?) wood
 – Romans 500 B.C.
• Renaissance revival
• 1800’s analysis
• efficient
Truss Structures
– analogous to cables and struts

(a) STABLE: pinned supports resist thrust

(b) UNSTABLE: substitution of roller support eliminates thrust resistance

(c) STABLE: wood strut resists thrust internally to form simple truss
Truss Structures

- comprised of straight members
- geometry with triangles is stable
- loads applied only at pin joints

http://nisee.berkeley.edu/godden
Truss Structures

• 2 force members
 – forces in line, equal and opposite
 – compression
 – tension

• 3 members connected by 3 joints

• 2 more members need 1 more joint
 \[b = 2n - 3 \]
Truss Structures

• compression and tension
Truss Structures

- statically determinate
- indeterminate
- unstable

\[b = 21 \quad n = 12 \quad 2(n) - 3 = 2(12) - 3 = 21 \]
(a) Determinate.

\[b = 16 \quad n = 10 \quad b = 16 < 2(10) - 3 = 17 \]
(Too few members—square panel is unstable)
(c) Unstable.

\[b = 18 \quad n = 10 \quad b = 18 > 2(10) - 3 = 17 \]
(Too many members)
(b) Indeterminate.
Trusses

- common designs
Trusses

- common designs

- Bowstring truss
- Lenticular truss
- "Scissors" truss
- Cantilevered truss (funicularly shaped)
- Northlight trusses
- Monitors with clerestories
Trusses

- uses
 - roofs & canopies
 - long spans
 - lateral bracing
Truss Connections

• “pins”
Sainsbury Center, Foster 1978
Sainsbury Center, Foster 1978

two pin-connection supports (typical of all trusses)

see detail

third pin connection at end trusses only (makes truss and supporting columns behave as a rigid frame to minimize movement around end glazing)

tubular steel prism columns are cantilevered from foundation (rigid base connection)

prism (3-sided) roof trusses

tubular cross-bracing between columns
Truss Analysis

• visualize compression and tension from deformed shape

http://nisee.berkeley.edu/godden
Truss Analysis

- **Method of Joints**
- **Graphical Methods**
- **Method of Sections**

- all rely on equilibrium
 - of bodies
 - internal equilibrium
Method of Joints

- isolate each joint
- enforce equilibrium in F_x and F_y
- can find all forces

- long
- easy to mess up
Joint Cases

- two bodies connected

A B C

or

A B C

equal

equal and 0
Joint Cases

- three bodies with two in line

![Diagram showing joint cases with three bodies and two in line]

or even
Joint Cases

- crossed
Tools – Multiframe

• in computer lab
Tools – Multiframe

• frame window
 – define truss members
 • or pre-defined truss
 – select points, assign supports
 – select members, assign section & assign pin ends

• load window
 – select points, add point load
Tools – Multiframe

• to run analysis choose
 – Analyze menu
 • Linear

• plot
 – choose options

• results
 – choose options