beams: bending and shear stress
Galileo
- relationship between stress and depth²

- can see
 - top squishing
 - bottom stretching

what are the stress across the section?
Pure Bending

- bending only
- no shear
- axial normal stresses from bending can be found in
 - homogeneous materials
 - plane of symmetry
 - follow Hooke’s law
Bending Moments

- **sign convention:**

- **size of maximum internal moment will govern our design of the section**
Normal Stresses

- geometric fit
 - plane sections remain plane
 - stress varies linearly
Neutral Axis

- stresses vary linearly
- zero stress occurs at the centroid
- neutral axis is line of centroids (n.a.)
Derivation of Stress from Strain

• pure bending = arc shape

\[L = R \theta \]

\[L_{outside} = (R + y)\theta \]

\[\varepsilon = \frac{\delta}{L} = \frac{L_{outside} - L}{L} = \frac{(R + y)\theta - R \theta}{R \theta} = \frac{y}{R} \]
Derivation of Stress

- zero stress at n.a.

\[f = E \varepsilon = \frac{E_y}{R} \]

\[f_{\text{max}} = \frac{E_c}{R} \]

\[f = \frac{y}{c} f_{\text{max}} \]
Bending Moment

- resultant moment from stresses = bending moment!

\[M = \Sigma f_y \Delta A \]

\[= \Sigma \frac{y f_{\text{max}}}{c} y \Delta A = \frac{f_{\text{max}}}{c} \Sigma y^2 \Delta A = \frac{f_{\text{max}}}{c} I = f_{\text{max}} S \]
Bending Stress Relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvature</td>
<td>(\frac{1}{R} = \frac{M}{EI})</td>
</tr>
<tr>
<td>General Bending Stress</td>
<td>(f_b = \frac{My}{I})</td>
</tr>
<tr>
<td>Section Modulus</td>
<td>(S = \frac{I}{c})</td>
</tr>
<tr>
<td>Maximum Bending Stress</td>
<td>(f_b = \frac{M}{S})</td>
</tr>
<tr>
<td>Required Section Modulus for Design</td>
<td>(S_{\text{required}} \geq \frac{M}{F_b})</td>
</tr>
</tbody>
</table>
Transverse Loading and Shear

- perpendicular loading
- internal shear
- along with bending moment
Bending vs. Shear in Design

- **bending stresses dominate**

- **shear stresses exist horizontally with shear**

- **no shear stresses with pure bending**
Shear Stresses

• horizontal & vertical
Shear Stresses

- horizontal & vertical
Beam Stresses

- horizontal with bending

![Diagram of beam stresses](image)
Equilibrium

- **horizontal force** V needed

\[V_{\text{longitudinal}} = \frac{V_T Q}{I} \Delta x \]

- **Q is a moment area**
Moment of Area

- \(Q \) is a moment area with respect to the n.a. of area above or below the horizontal

- \(Q_{\text{max}} \) at \(y=0 \) (neutral axis)

- \(q \) is shear flow:
 \[
 q = \frac{V_{\text{longitudinal}}}{\Delta x} = \frac{V_T Q}{I}
 \]
Shearing Stresses

\[f_v = \frac{V}{DA} = \frac{V}{b \cdot \Delta x} \]

\[f_{v-\text{ave}} = \frac{VQ}{Ib} \]

- \(f_v = 0 \) on the top/bottom
- \(b \text{ min} \) may not be with \(Q \text{ max} \)
- with \(h/4 \geq b, f_{v-\text{max}} \leq 1.008 f_{v-\text{ave}} \)
Rectangular Sections

\[I = \frac{bh^3}{12} \quad Q = A\bar{y} = \frac{bh^2}{8} \]

\[f_v = \frac{VQ}{Ib} = \frac{3V}{2A} \]

- \(f_{v-max} \) occurs at n.a.
Steel Beam Webs

- **W and S sections**
 - b varies
 - stress in flange negligible
 - presume constant stress in web

\[
\sigma_{v\text{-max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}
\]
Shear Flow

- loads applied in plane of symmetry
- cut made perpendicular

\[q = \frac{VQ}{I} \]
Shear Flow Quantity

• sketch from Q

\[q = \frac{VQ}{I} \]
Connectors Resisting Shear

- plates with
 - nails
 - rivets
 - bolts
- splices

\[
\frac{V_{\text{longitudinal}}}{p} = \frac{VQ}{I}
\]

\[
nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p
\]
Vertical Connectors

- isolate an area with vertical interfaces

\[nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p \]
Unsymmetrical Shear or Section

- member can bend and twist
 - not symmetric
 - shear not in that plane
- shear center
 - moments balance