Rigid Frames

• rigid frames have no pins
• frame is all one body
• joints transfer moments and shear
• typically statically indeterminate
• types
 – portal
 – gable

Rigid Frames

– moments get redistributed
– deflections are smaller
– effective column lengths are shorter
– very sensitive to settling
Rigid Frames

- resists lateral loadings
- shape depends on stiffness of beams and columns
- 90° maintained

Braced Frames

- pin connections
- bracing to prevent lateral movements

Rigid Frames

- staggered truss
 - rigidity
 - clear stories

Rigid Frames

- connections
 - steel
 - concrete
Braced Frames

- types of bracing
 - knee-bracing
 - diagonal
 - X
 - K or chevron
 - shear walls

Shear Walls

- resist lateral load in plane with wall

Compression Members

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations

Column Buckling

- axially loaded columns
- long & slender
 - unstable equilibrium = buckling
 - sudden and not good
Modeling

- can be modeled with a spring at mid-height
- when moment from deflection exceeds the spring capacity ... “boing”
- critical load P

Effect of Length

- long & slender
- short & stubby

Buckling Load

- related to deflected shape ($P\Delta$)
- shape of sine wave
- Euler’s Formula
- smallest I governs

$$P_{\text{critical}} = \frac{\pi^2 EI}{(L)^2}$$

Critical Stress

- short columns
 $$f_{\text{critical}} = \frac{P_{\text{actual}}}{A} < F_a$$
- slenderness ratio $= \frac{L_e}{r}$ (L/d)
- radius of gyration $= r = \sqrt{\frac{I}{A}}$

$$f_{\text{critical}} = \frac{P_{\text{critical}}}{A} = \frac{\pi^2 EA r^2}{A(L_e)^2} = \frac{\pi^2 E}{(L_e/r)^2} \quad P_{\text{critical}} = \frac{\pi^2 EA}{(L_e/r)^2}$$
Critical Stresses

- when a column gets stubby, F_y will limit the load for steel
- real world has loads with eccentricity

Effective Length

- end conditions affect shape
- effective length factor, K
 $$L_e = K \cdot L$$

Bracing

- bracing affects shape of buckle in one direction
- both should be checked!

Centric & Eccentric Loading

- centric
 - allowable stress from strength or buckling
- eccentric
 - combined stresses
Combined Stresses

- axial + bending

\[f_{\text{max}} = \frac{P}{A} + \frac{Mc}{I} \]

\[M = P \cdot e \]

- design

\[f_{\text{max}} \leq \frac{f_{cr}}{F.S.} \]

Stress Limit Conditions

- ASD interaction formula

\[\frac{f_a}{F_a} + \frac{f_b}{F_b} \leq 1.0 \]

- with biaxial bending

\[\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \leq 1.0 \]

interaction diagram

Stress Limit Conditions

- in reality, as the column flexes, the moment increases

- \(P-\Delta \) effect

\[\frac{f_a}{F_a} + \frac{f_b \times (\text{Magnification factor})}{F_{bx}} \leq 1.0 \]

Rigid Frame Analysis

- members see
 - shear
 - axial force
 - bending

- V & M diagrams
 - plot on “outside”
Rigid Frame Analysis

- need support reactions
- free body diagram each member
- end reactions are equal and opposite on next member
- “turn” member like beam
- draw V & M

Rigid Frame Analysis

- FBD & M
 - opposite end reactions at joints

Rigid Frame Design

- columns in frames
 - ends can be “flexible”
 - stiffness affected by beams and column = \(\frac{EI}{L} \)
 - \(G = \Psi = \frac{\sum EI}{l_c} \)
 - for the joint
 - \(l_c \) is the column length of each column
 - \(l_b \) is the beam length of each beam
 - measured center to center
Tools – Multiframe

- **in classrooms and OAL**

Tools – Multiframe

- frame window
 - define frame members
 - or pre-defined frame
 - select points, assign supports
 - select members, assign section
 - load window
 - select point or member, add point or distributed loads

Tools – Multiframe

- to run analysis choose
 - Analyze menu
 - Linear
 - plot
 - choose options
 - results
 - choose options