Wood Beam Design

- **National Design Specification**
 - National Forest Products Association
 - ASD & LRFD
 - adjustment factors \(\times \) tabulated stress = allowable stress
 - adjustment factors terms, \(C \) with subscript
 - i.e., bending:

\[
f_b \leq F'_b = F_b \times (\text{product of adjustment factors})
\]

Timber

- lightweight: strength ~ like steel
 - strengths vary
 - by wood type
 - by direction
 - by “flaws”
 - size varies by tree growth
 - renewable resource
 - manufactured wood
 - assembles pieces
 - adhesives

Wood Properties

- cell structure and density

Wood Properties

- cell structure and density

hardwood

softwood
Wood Properties

- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some
- temperature
 - steam
 - volatile products
 - combustion

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- creep
 - additional deformation with no additional load

Structural Lumber

- dimension – 2 x’s (nominal)
- beams, posts, timber, planks
- grading
 - select structural
 - no. 1, 2, & 3
- tabular values
 by species
- glu-lam
- plywood

Adjustment Factors

- terms
 - \(C_D = \) load duration factor
 - \(C_M = \) wet service factor
 - 1.0 dry \(\leq \) 16% MC
 - \(C_F = \) size factor
 - visually graded sawn lumber and round timber > 12” depth
 \[
 C_F = \left(\frac{12}{d} \right)^{0.6} \leq 1.0
 \]

Table 5.2 (pg 177)
Adjustment Factors

- **terms**
 - $C_{fu} = \text{flat use factor}$
 - not decking
 - $C_i = \text{incising factor}$
 - increase depth for pressure treatment
 - $C_t = \text{temperature factor}$
 - lose strength at high temperatures

Adjustment Factors

- **terms**
 - $C_r = \text{repetitive member factor}$
 - $C_H = \text{shear stress factor}$
 - splitting
 - $C_v = \text{volume factor}$
 - same as C_F for glue laminated timber
 - $C_L = \text{beam stability factor}$
 - beams without full lateral support
 - $C_C = \text{curvature factor for laminated arches}$

Allowable Stresses

- **design values**
 - F_b: bending stress
 - F_t: tensile stress
 - F_v: horizontal shear stress
 - $F_{c,\perp}$: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain)
 - E: modulus of elasticity
 - F_p: bearing stress (parallel to grain)

Load Combinations

- **design loads, take the bigger of**
 - $(\text{dead loads})/0.9$
 - $(\text{dead loads} + \text{any possible combination of live loads})/C_D$
- **deflection limits**
 - no load factors
 - for stiffer members:
 - $\Delta_T \text{ max from } LL + 0.5(DL)$
Beam Design Criteria

- **strength design**
 - bending stresses predominate
 - shear stresses occur
- **serviceability**
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding

Deflection Limits

- based on service condition, severity

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>

Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y

Beam Design Criteria

- **superpositioning**
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)
Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{req'd}$ ($f_b \leq F_b$)

4. Determine section size

$$S = \frac{bh^2}{6}$$

Beam Design

4*. Include self weight for M_{max}

– and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

Beam Design

6. Evaluate shear stresses - horizontal

- ($f_v \leq F_v$)

- W and rectangles

$$f_{v\text{-max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}$$

- general

$$f_{v\text{-max}} = \frac{VQ}{I_b}$$

7. Provide adequate bearing area at supports

$$f_p = \frac{P}{A} \leq F_p$$
Beam Design

8. Evaluate torsion

\[f_v \leq F_v \]

- circular cross section
 \[f_v = \frac{T\rho}{J} \]
- rectangular
 \[f_v = \frac{T}{c_1 ab^2} \]

<table>
<thead>
<tr>
<th>n/b</th>
<th>c1</th>
<th>c2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1006</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1061</td>
</tr>
<tr>
<td>1.5</td>
<td>0.251</td>
<td>0.1058</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>oo</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>

9. Evaluate deflections

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]

Joists & Rafters

- allowable load tables
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings

Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms
Engineered Wood

• glued-laminated timber
 – glulam
 – short pieces glued together
 – straight or curved
 – grain direction parallel
 – higher strength
 – more expensive than sawn timber
 – large members (up to 100 feet!)
 – flexible forms

Engineered Wood

• I sections
 – beams
• other products
 – pressed veneer strip panels (Parallam)
• wood fibers
 – Hardieboard: cement & wood

Timber Elements

• stressed-skin elements
 – modular built-up “plates”
 – typically used for floors or roofs

Timber Elements

• built-up box sections
 – built-up beams
 – usually site-fabricated
 – bigger spans
Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs

Timber Elements

- folded plates and arch panels
 - usually of plywood

Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs

Approximate Depths

![Diagram of approximate depths for timber systems](image-url)