Wood Beam Design

- **National Design Specification**
 - National Forest Products Association
 - ASD & LRFD

 - adjustment factors \times tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:

$$f_b \leq F'_b = F_b \times (\text{product of adjustment factors})$$

Wood Properties

- **cell structure and density**

Timber

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives
Wood Properties

- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some
- temperature
 - steam
 - volatile products
 - combustion

http://www.swst.org/teach/sed/struct1.html

Wood Properties

- load duration
 - short duration
 - higher loads
 - normal duration
 - > 10 years
- creep
 - additional deformation with no additional load

Structural Lumber

- dimension – 2 x’s (nominal)
- beams, posts, timber, planks
- grading
 - select structural
 - no. 1, 2, & 3
- tabular values
 by species
- glu-lam
- plywood

Adjustment Factors

- terms
 - $C_D = \text{load duration factor}$
 - $C_M = \text{wet service factor}$
 - 1.0 dry \leq 16% MC
 - $C_F = \text{size factor}$
 - visually graded sawn lumber and round timber > 12" depth

 $C_F = \left(\frac{12}{d} \right)^{\frac{1}{3}} \leq 1.0$

Table 5.2 (pg 177)
Adjustment Factors

- **terms**
 - C_{fu} = flat use factor
 - not decking
 - C_i = incising factor
 - increase depth for pressure treatment
 - C_t = temperature factor
 - lose strength at high temperatures

Adjustment Factors

- **terms**
 - C_r = repetitive member factor
 - C_H = shear stress factor
 - splitting
 - C_V = volume factor
 - same as C_F for glue laminated timber
 - C_L = beam stability factor
 - beams without full lateral support
 - C_C = curvature factor for laminated arches

Allowable Stresses

- **design values**
 - F_b: bending stress
 - F_t: tensile stress
 - F_v: horizontal shear stress
 - $F_{c\bot}$: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain)
 - E: modulus of elasticity
 - F_p: bearing stress (parallel to grain)

Load Combinations

- **design loads, take the bigger of**
 - $(\text{dead loads})/0.9$
 - $(\text{dead loads} + \text{any possible combination of live loads})/C_D$

- **deflection limits**
 - no load factors
 - for stiffer members:
 - $\Delta_T \text{ max from } \text{LL} + 0.5(\text{DL})$
Beam Design Criteria

- **strength design**
 - bending stresses predominate
 - shear stresses occur
- **serviceability**
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding

Beam Design Criteria

- **superpositioning**
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)

Deflection Limits

- **based on service condition, severity**

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>

Lateral Buckling

- **lateral buckling caused by compressive forces at top coupled with insufficient rigidity**
- can occur at low stress levels
- stiffen, brace or bigger I_y
Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{req'd}$ \((f_b \leq F_b) \)

4. Determine section size \[
S = \frac{bh^2}{6}
\]

Beam Design

4*. Include self weight for M_{max}

– and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

Beam Design

6. Evaluate shear stresses - horizontal

\((f_v \leq F_v) \)

- W and rectangles \[
f_{v-max} = \frac{3V}{2A} \approx \frac{V}{A_{web}}
\]

- general \[
f_{v-max} = \frac{VQ}{lb}
\]

7. Provide adequate bearing area at supports \[
f_p = \frac{P}{A} \leq F_p
\]
Beam Design

8. Evaluate torsion

\(f_v \leq F_v \)

- circular cross section
 \[f_v = \frac{T \rho}{J} \]
- rectangular
 \[f_v = \frac{T}{c_1 ab^2} \]

Beam Design

9. Evaluate deflections

\[\gamma_{\text{max}} (x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]

Joists & Rafters

- allowable load tables
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings

LRFD

- factored loads & reduced nominal capacity

\[M_u = \gamma_D M_D + \gamma_L M_L \leq \phi_b M_n \]

- \(\phi_b \) - Resistance factor
- \(\gamma \) - Load factor for (D)ead & (L)ive load
- nominal adjusted – no \(C_D \)

\[M_n = F_{bn} \times S \]

\[F_{bn} = F_{bn} (\phi_b) (\lambda) (\text{product of adjustment factors}) \]

\[F_{bn} = F_b \times K_F \text{ (conversion factor)} \]
Engineered Wood

• plywood
 – veneers at different orientations
 – glued together
 – split resistant
 – higher and uniform strength
 – limited shrinkage and swelling
 – used for sheathing, decking, shear walls, diaphragms

Engineered Wood

• glued-laminated timber
 – glulam
 – short pieces glued together
 – straight or curved
 – grain direction parallel
 – higher strength
 – more expensive than sawn timber
 – large members (up to 100 feet!)
 – flexible forms

Engineered Wood

• I sections
 – beams

• other products
 – pressed veneer strip panels (Parallam)

• wood fibers
 – Hardieboard: cement & wood

Timber Elements

• stressed-skin elements
 – modular built-up “plates”
 – typically used for floors or roofs
Timber Elements

- **built-up box sections**
 - built-up beams
 - usually site-fabricated
 - bigger spans

Timber Elements

- **trusses**
 - long spans
 - versatile
 - common in roofs

Timber Elements

- **folded plates and arch panels**
 - usually of plywood

Timber Elements

- **arches and lamellas**
 - arches commonly laminated timber
 - long spans
 - usually only for roofs
Approximate Depths

<table>
<thead>
<tr>
<th>Approximate Depths</th>
<th>Feet</th>
<th>Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purlins</td>
<td>4/16</td>
<td>0.31</td>
</tr>
<tr>
<td>Joists</td>
<td>1/8-1/2</td>
<td>0.13-0.16</td>
</tr>
<tr>
<td>Structural-wood</td>
<td>1/8-1/2</td>
<td>0.13-0.16</td>
</tr>
<tr>
<td>Box beams</td>
<td>1/8-1/2</td>
<td>0.13-0.16</td>
</tr>
<tr>
<td>Trussed rafters</td>
<td>1/8-1/2</td>
<td>0.13-0.16</td>
</tr>
<tr>
<td>Open-web plates</td>
<td>1/8-1/2</td>
<td>0.13-0.16</td>
</tr>
<tr>
<td>Flat trusses</td>
<td>1/8-1/2</td>
<td>0.13-0.16</td>
</tr>
<tr>
<td>Shoped trusses</td>
<td>1/8-1/2</td>
<td>0.13-0.16</td>
</tr>
<tr>
<td>Plywood</td>
<td>1/8-1/2</td>
<td>0.13-0.16</td>
</tr>
<tr>
<td>Laminated arches</td>
<td>1/8-1/2</td>
<td>0.13-0.16</td>
</tr>
</tbody>
</table>

FIGURE 15-3 Approximate span ranges for timber systems.