Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations

Effect of Length (revisited)

- long & slender
- short & stubby

Critical Stresses (revisited)

- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity
Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!

Wood Columns

- slenderness ratio = \(L/d_{\text{min}} = L/d_1 \)
 - \(d_1 \) = smaller dimension
 - \(l_e/d \leq 50 \) (max)

\[
f_c = \frac{P}{A} \leq F'_c
\]

- where \(F'_c \) is the allowable compressive strength parallel to the grain
- bracing common

Allowable Wood Stress

\[
F'_c = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right)
\]

where:

- \(F_c \) = compressive strength parallel to grain
- \(C_D \) = load duration factor
- \(C_M \) = wet service factor (1.0 dry)
- \(C_t \) = temperature factor
- \(C_F \) = size factor
- \(C_p \) = column stability factor

(Table 5.2)

Strength Factors

- wood properties and load duration, \(C_D \)
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- stability, \(C_p \)
 - combination curve - tables

\[
F'_c = F_c^* C_p = \left(F_c C_D \right) C_p
\]
Procedure for Analysis

1. calculate \(L / d_{\text{min}} \)
 - \(KL / d \) each axis, choose largest

2. obtain \(F' \)
 - compute \(F_{cE} = \frac{K_{cE}E}{(L/d)^2} \)
 - \(K_{cE} = 0.3 \) sawn
 - \(K_{cE} = 0.418 \) glu-lam

3. compute \(F_c^* \approx F_cC_D \)

4. calculate \(F_{cE}/F_c^* \) and get \(C_p \) (chart)

5. calculate \(F_c' = F_c^*C_p \)

Procedure for Design

1. guess a size (pick a section)

2. calculate \(L / d_{\text{min}} \)
 - \(KL / d \) each axis, choose largest

3. obtain \(F' \)
 - compute \(F_{cE} = \frac{K_{cE}E}{(L/d)^2} \)
 - \(K_{cE} = 0.3 \) sawn
 - \(K_{cE} = 0.418 \) glu-lam

4. compute \(F_c^* \approx F_cC_D \)

5. calculate \(F_{cE}/F_c^* \) and get \(C_p \) (chart)
Procedure for Design (cont’d)

6. calculate \(F'_{c} = F_{c} C_{p} \)

7. compute \(P_{\text{allowable}} = F'_{c} A \)
 • or find \(f_{\text{actual}} = P/A \)

8. is \(P \leq P_{\text{allowable}} \)? (or \(f_{\text{actual}} \leq F'_{c} \)?)
 • yes: OK
 • no: pick a bigger section and go back to step 2.

Specific Column Charts

<table>
<thead>
<tr>
<th>Column Section</th>
<th>Unbored Length (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Area (in.)</td>
<td>6</td>
</tr>
<tr>
<td>4 x 4</td>
<td>12.25</td>
</tr>
<tr>
<td>4 x 6</td>
<td>19.25</td>
</tr>
<tr>
<td>4 x 8</td>
<td>25.35</td>
</tr>
<tr>
<td>6 x 6</td>
<td>30.25</td>
</tr>
<tr>
<td>6 x 8</td>
<td>41.25</td>
</tr>
<tr>
<td>8 x 8</td>
<td>52.25</td>
</tr>
<tr>
<td>8 x 10</td>
<td>62.50</td>
</tr>
<tr>
<td>8 x 10</td>
<td>71.25</td>
</tr>
<tr>
<td>8 x 12</td>
<td>86.25</td>
</tr>
<tr>
<td>10 x 10</td>
<td>90.25</td>
</tr>
<tr>
<td>10 x 12</td>
<td>109.25</td>
</tr>
<tr>
<td>10 x 14</td>
<td>126.25</td>
</tr>
<tr>
<td>12 x 12</td>
<td>132.25</td>
</tr>
<tr>
<td>14 x 14</td>
<td>162.25</td>
</tr>
<tr>
<td>16 x 16</td>
<td>190.25</td>
</tr>
</tbody>
</table>

*Load capacity in kips for solid-sawn sections of No. 1 grade Douglas fir-larch with no adjustment for moisture or load duration conditions.

Timber Construction by Code

• light-frame
 – light loads
 – 2x’s
 – floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 – normal spans of 20-25 ft or 6-7.5 m
 – plywood spans between joists
 – stud or load-bearing masonry walls
 – limited to around 3 stories – fire safety

Design of Columns with Bending

• satisfy
 – strength
 – stability

• pick
 – section
Design

- Wood

\[
\left(\frac{f_c}{F'_c} \right)^2 + \frac{f_{bx}}{F'_{bx} \left(1 - \frac{f_c}{F_{cEx}} \right)} \leq 1.0
\]

() term – magnification factor for P-\(\Delta\)

\(F'_{bx}\) – allowable bending strength

Design Steps Knowing Loads

1. assume limiting stress
 - buckling, axial stress, combined stress
2. solve for \(r\), \(A\) or \(S\)
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok