Connectors

- joining
 - lapping
 - interlocking
 - butting
- mechanical
 - “third-elements”

• transfer load at a point, line or surface
 - generally more than a point due to stresses

Wood Connectors

- adhesives
 - used in a controlled environment
 - can be used with nails
- mechanical
 - bolts
 - lag bolts or lag screws
 - nails
 - split ring and shear plate connectors
 - timber rivets
Bolted Joints

- connected members in tension cause shear stress
- connected members in compression cause bearing stress

Tension Members

- members with holes have reduced area
- increased tension stress
- $f_t = \frac{P}{A_e}$ (or $\frac{T}{A_e}$)

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too

Single Shear

- seen when 2 members are connected

\[f_v = \frac{P}{A} = \frac{P}{\pi \frac{d^2}{4}} \]
Double Shear

- seen when 3 members are connected

\[\Sigma F = 0 = -P + 2\left(\frac{P}{2}\right) \]

\[f_v = \frac{P}{2A} = \frac{P}{2} = \frac{P}{\pi d^2/4} \]

Bolted Joints

- twisting
- tear out
 - shear strength
 - end distance & spacing

Nailed Joints

- tension stress (pullout)
- shear stress nails presumed to share load by distance from centroid of nail pattern

Bearing Stress

- compression & contact
- stress limited by species & grain direction to load
- projected area

\[f_p = \frac{P}{A_{\text{projected}}} = \frac{P}{td} \]
Nailed Joints

- sized by pennyweight units / length
- embedment length
- dense wood, more capacity

TABLE 7.1 Lateral Load Capacity of Common Wire Nails (lb/nail)

<table>
<thead>
<tr>
<th>Side Member Thickness (in.)</th>
<th>Nail Length (in.)</th>
<th>Diameter, (D) (in.)</th>
<th>Pennyweight</th>
<th>Load per Nail (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Plywood Side Members</td>
<td>1/4 2</td>
<td>0.113</td>
<td>6d</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>21/2</td>
<td>0.131</td>
<td>6d</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.148</td>
<td>10d</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>1/2 2</td>
<td>0.113</td>
<td>6d</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>21/2</td>
<td>0.131</td>
<td>6d</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.148</td>
<td>10d</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>31/2</td>
<td>0.162</td>
<td>16d</td>
<td>92</td>
</tr>
</tbody>
</table>

*NDS

Connectors Resisting Beam Shear

- plates with
 - nails
 - rivets
 - bolts
- splices
- \(V \) from beam load related to \(V_{\text{longitudinal}} \)

\[
\frac{V_{\text{longitudinal}}}{I} = \frac{VQ}{p} \\
nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p
\]

Vertical Connectors

- isolate an area with vertical interfaces

\[
nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p
\]