Steel Beam Design

- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 2005

Steel Materials

- steel grades
 - ASTM A36 – carbon
 - plates, angles
 - \(F_y = 36 \text{ ksi} \) & \(F_u = 58 \text{ ksi} \)
 - ASTM A572 – high strength low-alloy
 - some beams
 - \(F_y = 60 \text{ ksi} \) & \(F_u = 75 \text{ ksi} \)
 - ASTM A992 – for building framing
 - most beams
 - \(F_y = 50 \text{ ksi} \) & \(F_u = 65 \text{ ksi} \)

Steel Properties

- high strength to weight ratio
- elastic limit – yield \((F_y) \)
- inelastic – plastic
- ultimate strength \((F_u) \)
- ductile
- strength sensitive to temperature
- can corrode
- fatigue

Winnipeg DOT

strain hardening

Ultimate strength

Elongation to failure

Specified minimum

strain hardening range
Structural Steel

- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking

Steel Construction

- welding
- bolts

Unified Steel Design

- ASD
 \[R_a \leq \frac{R_n}{\Omega} \]
 - bending (braced) \(\Omega = 1.67 \)
 - bending (unbraced) \(\Omega = 1.67 \)
 - shear \(\Omega = 1.5 \) or 1.67
 - shear (bolts & welds) \(\Omega = 2.00 \)
 - shear (welds) \(\Omega = 2.00 \)

* flanges in compression can buckle
LRFD

• loads on structures are not constant
• can be more influential on failure
• happen more or less often
• UNCERTAINTY

\[R_u = \gamma_D R_D + \gamma_L R_L \leq \phi R_n \]

\(\phi \) - resistance factor
\(\gamma \) - load factor for (D)ead & (L)ive load

LRFD Steel Beam Design

• limit state is yielding all across section
• outside elastic range
• load factors & resistance factors

Beam Design Criteria (revisited)

• strength design
 – bending stresses predominate
 – shear stresses occur

• serviceability
 – limit deflection
 – stability

• superpositioning
 – use of beam charts
 – elastic range only!
 – “add” moment diagrams
 – “add” deflection CURVES (not maximums)

LRFD Load Combinations

ASCE-7 (2010)

• 1.4D
• 1.2D + 1.6L + 0.5(L_r or S or R)
• 1.2D + 1.6(L_r or S or R) + (L or 0.5W)
• 1.2D + 1.0W + L + 0.5(L_r or S or R)
• 1.2D + 1.0E + L + 0.2S
• 0.9D + 1.0W
• 0.9D + 1.0E
 • F has same factor as D in 1-5 and 7
 • H adds with 1.6 and resists with 0.9 (permanent)
Steel Beams

- lateral stability - bracing
- local buckling – stiffen, or bigger I_y

Local Buckling

- steel I beams
- flange
 – buckle in direction of smaller radius of gyration
- web
 – force
 – “crippling”

Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners

Local Buckling

- flange
- web
Shear in Web

- plate girders and stiffeners

Steel Beams

- bearing
 - provide adequate area
 - prevent local yield of flange and web

LRFD - Flexure

\[\sum \gamma_i R_i = M_u \leq \phi_b M_n = 0.9 F_y Z \]

- \(M_u \): maximum moment
- \(\phi_b \): resistance factor for bending = 0.9
- \(M_n \): nominal moment (ultimate capacity)
- \(F_y \): yield strength of the steel
- \(Z \): plastic section modulus*

Internal Moments - at yield

- material hasn’t failed

\[M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y \]

\[= \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y \]
Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{\text{tension}} = A_{\text{compression}}$

\[M_p = bc^2 f_y = \frac{3}{2} M_y \]

n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- $f_y A_1 = f_y A_2$
- moment found from yield stress times moment area

\[M_p = f_y A_1 d = f_y \sum A_i d_i \]

Plastic Hinge Development

- stability can be effected

Plastic Hinge Examples
Plastic Section Modulus

- shape factor, \(k \)
 \[
 k = \frac{M_p}{M_y}
 \]
 = 3/2 for a rectangle
 \[\approx 1.1 \text{ for an } I\]
 \[
 k = \frac{Z}{S}
 \]

- plastic modulus, \(Z \)
 \[
 Z = \frac{M_p}{f_y}
 \]

LRFD - Shear

\[
\Sigma \gamma_i R_i = V_u \leq \phi_v V_n = 1.0 \left(0.6 F_{yw} A_w \right)
\]

- maximum shear \(V_u \)
- resistance factor for shear \(\phi_v = 0.9 \)
- nominal shear \(V_n \)
- yield strength of the steel in the web \(F_{yw} \)
- area of the web \(A_w = t_w d \)

LRFD - Flexure Design

- limit states for beam failure
 1. yielding
 2. lateral-torsional buckling
 3. flange local buckling
 4. web local buckling
- minimum \(M_n \) governs
 \[
 \Sigma \gamma_i R_i = M_u \leq \phi_b M_n
 \]

Compact Sections

- plastic moment can form before any buckling
- criteria
 \[
 - \frac{b_f}{2t_f} \leq 0.38 \frac{E}{F_y}
 \]
 \[
 - \frac{h_c}{t_w} \leq 3.76 \frac{E}{F_y}
 \]
Lateral Torsional Buckling

\[M_n = C_b \left[\text{moment based on lateral buckling} \right] \leq M_p \]

\[C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 2M_A + 4M_B + 3M_C} \]

- \(C_b \) = modification factor
- \(M_{\text{max}} \) - |max moment|, unbraced segment
- \(M_A \) - |moment|, 1/4 point
- \(M_B \) = |moment|, center point
- \(M_C \) = |moment|, 3/4 point

Beam Design Charts

Charts & Deflections

- **beam charts**
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is NOT included in \(M_n \)
- **deflections**
 - no factors are applied to the loads
 - often governs the design

Design Procedure (revisited)

1. Know unbraced length, material, design method (\(\Omega, \phi \))
2. Draw V & M, finding \(M_{\text{max}} \)
3. Calculate \(Z_{\text{req'd}} \) \(\left(f_b \leq F_b \right) \) \(\left(M_u \leq \phi_b M_n \right) \)
4. Choose (economical) section from section or beam capacity charts
Beam Design (revisited)

4. Include self weight for M_{max} — and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

Beam Design (revisited)

6. Evaluate shear stresses - horizontal

- ($f_v \leq F_v$) or ($V_u \leq \phi V_n$)

- W and rectangles

$$f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}$$

- thin walled sections

$$f_{v-\text{max}} = \frac{VQ}{Ib}$$

7. Provide adequate bearing area at supports

$$f_p = \frac{P}{A} \leq F_p$$
Beam Design (revisited)

8. Evaluate torsion

\(f_v \leq F_v \)

- circular cross section
 \(f_v = \frac{T \rho}{J} \)

- rectangular
 \(f_v = \frac{T}{c_4 ab^2} \)

9. Evaluate deflections – NO LOAD FACTORS

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]

Load Tables & Equivalent Load

- uniformly distributed loads
- equivalent "w"

\[M_{\text{max}} = \frac{w_{\text{equivalent}} L^2}{8} \]

Steel Arches and Frames

- solid sections
- or open web

http://nisee.berkeley.edu/godden
Steel Shell and Cable Structures

Approximate Depths

<table>
<thead>
<tr>
<th>Span (Feet)</th>
<th>Depth (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>1</td>
</tr>
<tr>
<td>11-20</td>
<td>2</td>
</tr>
<tr>
<td>21-30</td>
<td>3</td>
</tr>
<tr>
<td>31-40</td>
<td>4</td>
</tr>
<tr>
<td>41-50</td>
<td>5</td>
</tr>
<tr>
<td>51-60</td>
<td>6</td>
</tr>
<tr>
<td>61-70</td>
<td>7</td>
</tr>
<tr>
<td>71-80</td>
<td>8</td>
</tr>
<tr>
<td>81-90</td>
<td>9</td>
</tr>
<tr>
<td>91-100</td>
<td>10</td>
</tr>
<tr>
<td>101-110</td>
<td>11</td>
</tr>
<tr>
<td>111-120</td>
<td>12</td>
</tr>
<tr>
<td>121-130</td>
<td>13</td>
</tr>
<tr>
<td>131-140</td>
<td>14</td>
</tr>
<tr>
<td>141-150</td>
<td>15</td>
</tr>
</tbody>
</table>

Key:
- Minimum depth
- Maximum depth
- Possible span range
- Minimum span

Ribbed domes
- Cables