Iron & Steel Trusses

- cast iron
 - 18th century
 - chain links
- wrought-iron
- rivets

Truss Connections

- gusset plates
- bolts
- welds

Trusses

- require lateral bracing
- consider buckling
- indeterminate trusses
 - extra members
 - solvable with statics
 - cables can’t hold compression
 - displacement methods
 - elastic elongation
 - too few members, unstable
Manufactured Trusses

- open web joists
- parallel chord

Open Web Joists

- SJI: www.steeljoist.com
- Vulcraft: www.vulcraft.com
 - K Series (Standard)
 - 8-30" deep, spans 8-50 ft
 - LH Series (Long span)
 - 18-48" deep, spans 25-96 ft
 - DLH (Deep Long Spans)
 - 52-72" deep, spans 89-144 ft
 - SLH (Long spans with high strength steel)
 - pitched top chord
 - 80-120" deep, spans 111-240 ft

Decks

- sheet steel
- composite

Plate Girders

- welds
- web stiffeners
Web Bearing

- max loads

\[P_{n(\text{max-end})} = (N + 2.5k)F_yt_w \]
\[P_{n(\text{max-interior})} = (N + 5k)F_{yw}t_w \]

Space Trusses

- 3D with 2 force bodies and pins
 - pyramid
 - tetrahedron
- “frames” have fixed joints
- layers
- 40’s

Space Trusses

- connections
- supports

http://nisee.berkeley.edu/godden
Space Trusses

Tensegrities

- 3D frame
- discontinuous struts
- continuous cables

Free Ride Home – Kenneth Snelson

Method of Sections

- relies on internal forces being in equilibrium on a section
- cut to expose 3 or less members
- coplanar forces $\sum M = 0$ too

Method of Sections

- joints on or off the section are good to sum moments
- quick for few members
- not always obvious where to cut or sum