Elements of Architectural Structures:
Form, Behavior, and Design
ARCH 614
Dr. Anne Nichols
Spring 2014

Lecture 18

Steel Columns

Elements of Architectural Structures
ARCH 614

Steel Columns: Column Design

Structural Steel
- standard rolled shapes (W, C, L, T)
- tubing
- pipe
- built-up

Steel Columns 2

Design Methods (revisited)
- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Steel Columns 3

Allowable Stress Design (ASD)
- AICS 9th ed

\[F_a = \frac{f_{\text{critical}}}{F.S.} = \frac{12\pi^2 E}{23(\frac{Kl}{r})^2} \]

- slenderness ratio \(\frac{Kl}{r} \)
 - for \(kl/r \geq C_c \)
 - \(F_y = 36 \) ksi \(\Rightarrow 126.1 \)
 - \(F_y = 50 \) ksi \(\Rightarrow 107.0 \)
Steel Columns 5
Lecture 18
Elements of Architectural Structures
ARCH 614
S2007abn

C_c and Euler's Formula

• K_l/r < C_c
 – short and stubby
 – parabolic transition

• K_l/r > C_c
 – Euler's relationship
 – < 200 preferred

\[C_c = \sqrt{\frac{2\pi^2 E}{F_y}} \]

Steel Columns 6
Lecture 18
Elements of Architectural Structures
ARCH 614
S2007abn

Short / Intermediate

• L_e/r < C_c

\[F_a = 1 - \left(\frac{K_l/r}{2C_c^2} \right) \frac{F_y}{F.S.} \]

– where

\[F.S. = \frac{5}{3} + \frac{3(K_l/r)}{8C_c} - \frac{(K_l/r)^3}{8C_c^3} \]

Steel Columns 7
Lecture 18
Elements of Architectural Structures
ARCH 614
S2007abn

Unified Design

• limit states for failure

\[P_a \leq \frac{P_n}{\phi_c} \]

\[P_u \leq \phi_c P_n \]

1. yielding

\[\frac{K L}{r} \leq 4.71 \sqrt{\frac{E}{F_y}} \quad \text{or} \quad F_c \geq 0.44F_y \]

2. buckling

\[\frac{K L}{r} > 4.71 \sqrt{\frac{E}{F_y}} \quad \text{or} \quad F_c < 0.44F_y \]

\[F_e \quad \text{– elastic buckling stress (Euler)} \]
Unified Design

- \(P_n = F_{cr} A_g \)
 - for \(\frac{KL}{r} \leq 4.71 \frac{E}{F_y} \)
 - for \(\frac{KL}{r} > 4.71 \frac{E}{F_y} \)
 - where \(F_e = \frac{\pi^2 E}{(KL/r)^2} \)

Procedure for Analysis

1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
2. find \(F_{cr} \) (see Note) from appropriate equation
 - tables are available
3. compute \(P_n = F_{cr} A_g \)
4. is \(P_a \leq P_n/\Omega \) or is \(P_u \leq \phi P_n \)?
 - yes: ok
 - no: insufficient capacity and no good

Procedure for Design

1. guess a size (pick a section)
2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
3. find \(F_a \) or \(F_{cr} \) (see Note) from appropriate equations
 - or find a chart
4. compute \(P_n = F_{cr} A_g \)

Procedure for Design (cont’d)

5. is \(P_a \leq P_n/\Omega \) or is \(P_u \leq \phi P_n \)?
 - yes: ok
 - no: pick a bigger section and go back to step 2.
6. check design efficiency
 - percentage of stress = \(\frac{P_r}{P_c} \cdot 100\% \)
 - if between 90-100%: good
 - if < 90%: pick a smaller section and go back to step 2.
Column Charts, ϕF_{cr}

Available Critical Stress, ϕF_{cr}, for Compression Members, ksf ($F_y = 50$ ksf and $\phi_c = 0.90$)

<table>
<thead>
<tr>
<th>K/L</th>
<th>ϕF_y</th>
<th>K/L</th>
<th>ϕF_y</th>
<th>K/L</th>
<th>ϕF_y</th>
<th>K/L</th>
<th>ϕF_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.0</td>
<td>21</td>
<td>39.8</td>
<td>31</td>
<td>27.4</td>
<td>11</td>
<td>15.4</td>
</tr>
<tr>
<td>2</td>
<td>45.0</td>
<td>22</td>
<td>39.6</td>
<td>33</td>
<td>27.5</td>
<td>12</td>
<td>15.2</td>
</tr>
<tr>
<td>3</td>
<td>45.0</td>
<td>23</td>
<td>39.3</td>
<td>35</td>
<td>27.2</td>
<td>13</td>
<td>15.0</td>
</tr>
<tr>
<td>4</td>
<td>44.9</td>
<td>24</td>
<td>39.1</td>
<td>37</td>
<td>26.9</td>
<td>14</td>
<td>14.7</td>
</tr>
<tr>
<td>5</td>
<td>44.9</td>
<td>25</td>
<td>38.8</td>
<td>39</td>
<td>26.5</td>
<td>15</td>
<td>14.5</td>
</tr>
<tr>
<td>6</td>
<td>44.9</td>
<td>26</td>
<td>38.5</td>
<td>41</td>
<td>26.2</td>
<td>16</td>
<td>14.2</td>
</tr>
<tr>
<td>7</td>
<td>44.8</td>
<td>27</td>
<td>38.3</td>
<td>43</td>
<td>25.9</td>
<td>17</td>
<td>14.0</td>
</tr>
<tr>
<td>8</td>
<td>44.8</td>
<td>28</td>
<td>38.0</td>
<td>45</td>
<td>25.6</td>
<td>18</td>
<td>13.8</td>
</tr>
<tr>
<td>9</td>
<td>44.7</td>
<td>29</td>
<td>37.8</td>
<td>47</td>
<td>25.2</td>
<td>19</td>
<td>13.6</td>
</tr>
<tr>
<td>10</td>
<td>44.7</td>
<td>30</td>
<td>37.5</td>
<td>49</td>
<td>24.9</td>
<td>20</td>
<td>13.4</td>
</tr>
<tr>
<td>11</td>
<td>44.6</td>
<td>31</td>
<td>37.2</td>
<td>51</td>
<td>24.6</td>
<td>21</td>
<td>13.2</td>
</tr>
<tr>
<td>12</td>
<td>44.5</td>
<td>32</td>
<td>36.9</td>
<td>53</td>
<td>24.2</td>
<td>22</td>
<td>13.0</td>
</tr>
<tr>
<td>13</td>
<td>44.4</td>
<td>33</td>
<td>36.6</td>
<td>55</td>
<td>23.9</td>
<td>23</td>
<td>12.8</td>
</tr>
<tr>
<td>14</td>
<td>44.4</td>
<td>34</td>
<td>36.4</td>
<td>57</td>
<td>23.6</td>
<td>24</td>
<td>12.6</td>
</tr>
<tr>
<td>15</td>
<td>44.3</td>
<td>35</td>
<td>36.1</td>
<td>59</td>
<td>23.3</td>
<td>25</td>
<td>12.4</td>
</tr>
<tr>
<td>16</td>
<td>44.2</td>
<td>36</td>
<td>35.8</td>
<td>61</td>
<td>22.9</td>
<td>26</td>
<td>12.2</td>
</tr>
<tr>
<td>17</td>
<td>44.1</td>
<td>37</td>
<td>35.5</td>
<td>63</td>
<td>22.6</td>
<td>27</td>
<td>12.0</td>
</tr>
<tr>
<td>18</td>
<td>43.9</td>
<td>38</td>
<td>35.2</td>
<td>65</td>
<td>22.3</td>
<td>28</td>
<td>11.8</td>
</tr>
<tr>
<td>19</td>
<td>43.8</td>
<td>39</td>
<td>34.9</td>
<td>67</td>
<td>22.0</td>
<td>29</td>
<td>11.7</td>
</tr>
<tr>
<td>20</td>
<td>43.7</td>
<td>40</td>
<td>34.6</td>
<td>69</td>
<td>21.7</td>
<td>30</td>
<td>11.4</td>
</tr>
<tr>
<td>21</td>
<td>43.6</td>
<td>41</td>
<td>34.3</td>
<td>71</td>
<td>21.3</td>
<td>31</td>
<td>11.1</td>
</tr>
<tr>
<td>22</td>
<td>43.6</td>
<td>42</td>
<td>34.0</td>
<td>73</td>
<td>21.0</td>
<td>32</td>
<td>10.8</td>
</tr>
<tr>
<td>23</td>
<td>43.3</td>
<td>43</td>
<td>33.7</td>
<td>75</td>
<td>20.7</td>
<td>33</td>
<td>10.5</td>
</tr>
<tr>
<td>24</td>
<td>43.1</td>
<td>44</td>
<td>33.4</td>
<td>77</td>
<td>20.4</td>
<td>34</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Beam-Column Design

- moment magnification (P-Δ)

$$M_u = B_1 M_{max-factored} \quad B_1 = \frac{C_m}{1 - (P_u/P_{e1})}$$

C_m – modification factor for end conditions

= 0.6 – 0.4(M_y/M_2) or

0.85 restrained, 1.00 unrestrained

P_{e1} – Euler buckling strength

$P_{e1} = \frac{\pi^2 E A}{(K/\ell)^2}$

Beam-Column Design

- LRFD Steel

$$\frac{P_r}{P_c} \geq 0.2 : \quad \frac{P_r}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0$$

$$\frac{P_r}{P_c} < 0.2 : \quad \frac{P_r}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0$$

P_r is required, P_c is capaci

ϕ_c - resistance factor for compression = 0.9

ϕ_b - resistance factor for bending = 0.9
Design Steps Knowing Loads (revisited)

1. assume limiting stress
 • buckling, axial stress, combined stress
2. solve for r, A or S
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Rigid Frame Design (revisited)

• columns in frames
 – ends can be “flexible”
 – stiffness affected by beams and column $= EI/L$

$$G = \Psi = \frac{\sum EI}{l_c}$$

– for the joint
 • l_c is the column length of each column
 • l_b is the beam length of each beam
 • measured center to center

Rigid Frame Design (revisited)

• column effective length, k