Connections

• needed to:
 – support beams by columns
 – connect truss members
 – splice beams or columns

• transfer load

• subjected to
 – tension or compression
 – shear
 – bending

Bolts

• bolted steel connections

Bolts

• types
 – materials
 • high strength
 • A307, A325, A492
 – location of threads
 • included - N
 • excluded - X
 – bearing or friction (SC)
 • always tightened
Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture

Bolts

- rarely fail in bearing
- holes considered 1/8” larger
- shear & tension
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - single shear or tension
 \[R_n = F_n A_b \]
 - double shear
 \[R_n = F_n 2A_b \]

- bearing (\(\phi_x \))
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - deformation is concern
 \[R_n = 1.2L_c tF_u \leq 2.4dtF_u \]
 - deformation isn’t concern
 \[R_n = 1.5L_c tF_u \leq 3.0dtF_u \]
 - long slotted holes
 \[R_n = 1.0L_c tF_u \leq 2.0dtF_u \]
 \(L_c \) – clear length to edge or next hole (ex. 1¼”, 3”)

Steel Bolts 5
Lecture 19
Elements of Architectural Structures
ARCH 614
S2007abn

Bolts

- rarely fail in bearing
- holes considered 1/8” larger
- shear & tension
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - single shear or tension
 \[R_n = F_n A_b \]
 - double shear
 \[R_n = F_n 2A_b \]

- bearing (\(\phi_x \))
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - deformation is concern
 \[R_n = 1.2L_c tF_u \leq 2.4dtF_u \]
 - deformation isn’t concern
 \[R_n = 1.5L_c tF_u \leq 3.0dtF_u \]
 - long slotted holes
 \[R_n = 1.0L_c tF_u \leq 2.0dtF_u \]
 \(L_c \) – clear length to edge or next hole (ex. 1¼”, 3”)

Steel Bolts 6
Lecture 19
Elements of Architectural Structures
ARCH 614
S2012abn

Bolts

- rarely fail in bearing
- holes considered 1/8” larger
- shear & tension
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - single shear or tension
 \[R_n = F_n A_b \]
 - double shear
 \[R_n = F_n 2A_b \]

- bearing (\(\phi_x \))
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - deformation is concern
 \[R_n = 1.2L_c tF_u \leq 2.4dtF_u \]
 - deformation isn’t concern
 \[R_n = 1.5L_c tF_u \leq 3.0dtF_u \]
 - long slotted holes
 \[R_n = 1.0L_c tF_u \leq 2.0dtF_u \]
 \(L_c \) – clear length to edge or next hole (ex. 1¼”, 3”)

Steel Bolts 7
Lecture 19
Elements of Architectural Structures
ARCH 614
S2012abn

Bolts

- rarely fail in bearing
- holes considered 1/8” larger
- shear & tension
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - single shear or tension
 \[R_n = F_n A_b \]
 - double shear
 \[R_n = F_n 2A_b \]

- bearing (\(\phi_x \))
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - deformation is concern
 \[R_n = 1.2L_c tF_u \leq 2.4dtF_u \]
 - deformation isn’t concern
 \[R_n = 1.5L_c tF_u \leq 3.0dtF_u \]
 - long slotted holes
 \[R_n = 1.0L_c tF_u \leq 2.0dtF_u \]
 \(L_c \) – clear length to edge or next hole (ex. 1¼”, 3”)

Steel Bolts 9
Lecture 19
Elements of Architectural Structures
ARCH 614
S2007abn

Bolts

- rarely fail in bearing
- holes considered 1/8” larger
- shear & tension
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - single shear or tension
 \[R_n = F_n A_b \]
 - double shear
 \[R_n = F_n 2A_b \]

- bearing (\(\phi_x \))
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - deformation is concern
 \[R_n = 1.2L_c tF_u \leq 2.4dtF_u \]
 - deformation isn’t concern
 \[R_n = 1.5L_c tF_u \leq 3.0dtF_u \]
 - long slotted holes
 \[R_n = 1.0L_c tF_u \leq 2.0dtF_u \]
 \(L_c \) – clear length to edge or next hole (ex. 1¼”, 3”)

Steel Bolts 8
Lecture 19
Elements of Architectural Structures
ARCH 614
S2007abn
Bolts

Tension Members

- steel members can have holes
- reduced area
- increased stress

$$A_n = A_g - A_{of \ all \ holes} + \sigma \sum \frac{s^2}{4g}$$

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too
- shear lag $A_e \leq A_n U$

Tension Members

- limit states for failure
 1. yielding $\phi_t = 0.9 \quad P_n = F_y A_g$
 2. rupture* $\phi_t = 0.75 \quad P_n = F_u A_e$

\(A_g\) - gross area
\(A_e\) - effective net area
(holes 3/16” + d)
\(F_u\) = the tensile strength of the steel (ultimate)
Framed Beam Connections

- angles
 - bolted
 - welded

Framed Beam Connections

- terms
 - coping

Framed Beam Connections

- tables for standard bolt sizes & spacings
- # bolts
- bolt diameter, angle leg thickness
- bearing on beam web

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling
Beam Connections

\[R_n = 0.6F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6F_y A_{vg} + U_{bs} F_u A_{nt} \]

- where \(U_{bs} \) is 1 for uniform tensile stress

Other Bolted Connections

- truss gussets
- base plates
- splices

The Royal Ontario Museum, Toronto, Canada
Daniel Libeskind
(AISC - Steel Structures of the Everyday)