Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - aggregate
 - water
- hydration
- fire resistant
- creep & shrink

Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c

Concrete Construction: materials & beams

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c
Reinforcement

- deformed steel bars (rebar)
 - Grade 40, $F_y = 40$ ksi
 - Grade 60, $F_y = 60$ ksi - most common
 - Grade 75, $F_y = 75$ ksi
 - US customary in # of 1/8” φ
- longitudinally placed
 - bottom
 - top for compression reinforcement
 - spliced, hooked, terminated...

Behavior of Composite Members

- plane sections remain plane
- stress distribution changes

\[
f_1 = E_1 \varepsilon = - \frac{E_1 y}{R}
\]
\[
f_2 = E_2 \varepsilon = - \frac{E_2 y}{R}
\]

Transformation of Material

- n is the ratio of E’s
 \[
n = \frac{E_2}{E_1}
\]
 - effectively widens a material to get same stress distribution

Stresses in Composite Section

- with a section transformed to one material, new I
 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by n

\[
n = \frac{E_2}{E_1} = \frac{E_{steel}}{E_{concrete}}
\]
\[
f_c = - \frac{M_y}{I_{transformed}}
\]
\[
f_s = - \frac{Myn}{I_{transformed}}
\]
Reinforced Concrete - stress/strain

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent stress block
 - concrete takes no tension
 - steel takes tension
 - force ductile failure

Location of n.a.

- ignore concrete below n.a.
- transform steel
- same area moments, solve for x

$$bx \cdot \frac{x}{2} - nA_s (d - x) = 0$$

T sections

- n.a. equation is different if n.a. below flange

$$b_f h_f \left(x - \frac{h_f}{2} \right) + (x - h_f) b_w \frac{(x - h_f)}{2} - nA_s (d - x) = 0$$
ACI Load Combinations

- **1.4D**
- **1.2D + 1.6L + 0.5(L_r or S or R)**
- **1.2D + 1.6(L_r or S or R) + (1.0L or 0.5W)**
- **1.2D + 1.0W + 1.0L + 0.5(L_r or S or R)**
- **1.2D + 1.0E + 1.0L + 0.5(L_r or S or R)**
- **0.9D + 1.0W**
- **0.9D + 1.0E**

can also use old ACI factors

Reinforced Concrete Design

- **stress distribution in bending**

![Diagram](image)

- **Wang & Salmon, Chapter 3**

Force Equations

- **C = 0.85 f’_c ba**
- **T = A_s f_y**
- **where**
 - **f’_c** = concrete compressive strength
 - **a** = height of stress block
 - **β_1** = factor based on **f’_c**
 - **x** = location to the n.a.
 - **b** = width of stress block
 - **f_y** = steel yield strength
 - **A_s** = area of steel reinforcement

Equilibrium

- **T = C**
- **M_n = T(d-a/2)**
 - **d** = depth to the steel n.a.
- **with** **A_s**
 - **a = A_s f_y / 0.85 f’_c b**
 - **M_u ≤ φ M_n**
 - **M_u = φ T(d-a/2) = φ A_s f_y (d-a/2)**
Over and Under-reinforcement

- **over-reinforced**
 - steel won’t yield
- **under-reinforced**
 - steel will yield
- **reinforcement ratio**
 - \(\rho = \frac{A_s}{bd} \)
 - use as a design estimate to find \(A_s, b, d \)
 - \(\text{max } \rho \) is found with \(\varepsilon_{\text{steel}} \geq 0.004 \) (not \(\rho_{\text{bal}} \))

A_s for a Given Section

- **several methods**
 - guess a and iterate
 1. guess a (less than n.a.)
 2. \(A_s = \frac{0.85 f'_c b a}{f_y} \)
 3. solve for a from \(M_n = \phi A_s f_y (d-a/2) \)
 \[a = 2 \left(d - \frac{M_n}{\phi A_s f_y} \right) \]
 4. repeat from 2. until a from 3. matches a in 2.

A_s for a Given Section (cont)

- **chart method**
 - Wang & Salmon Fig. 3.8.1 \(R_n \) vs. \(\rho \)
 1. calculate \(R_n = \frac{M_n}{bd^2} \)
 2. find curve for \(f'_c \) and \(f_y \) to get \(\rho \)
 3. calculate \(A_s \) and a
 - simplify by setting \(h = 1.1d \)

Reinforcement

- **min for crack control**
- **required**
 \[A_s = \frac{3\sqrt{f'_c}}{f_y} (bd) \]
- **not less than**
 \[A_s = \frac{200}{f_y} (bd) \]
- **\(A_{s-\text{max}} \)**
 \[a = \beta_1 (0.375d) \]
- **typical cover**
 - 1.5 in, 3 in with soil
- **bar spacing**

http://people.bath.ac.uk/abstji/concrete_video/virtual_lab.htm
Approximate Depths

Concrete Beams Lecture 21
Elements of Architectural Structures
ARCH 614 S2009abn

[Diagram showing various beam depths and spans]