concrete construction: shear & deflection

ACI Shear Values

• V_u is at distance d from face of support
• shear capacity: $V_c = \phi \times b_w d$

 – where b_w means thickness of web at n.a.

Shear in Concrete Beams

• flexure combines with shear to form diagonal cracks

• horizontal reinforcement doesn’t help
• stirrups = vertical reinforcement

ACI Shear Values

• shear stress (beams)

 – $\phi V_c = 2\sqrt{f_c'} b_w d$

 – f_c' is in psi

• shear strength:

 $V_u \leq \phi V_c + \phi V_s$

 – V_s is strength from stirrup reinforcement
Stirrup Reinforcement

- shear capacity:
 \[V_s = \frac{A_v f_v d}{s} \]
 - \(A_v \) = area in all legs of stirrups
 - \(s \) = spacing of stirrup

- may need stirrups when concrete has enough strength!

Table 3-8 ACI Provisions for Shear Design*

<table>
<thead>
<tr>
<th>(V_s < \frac{f_v d_y}{2})</th>
<th>(\phi V_s > V_s > \frac{f_v d_y}{2})</th>
<th>(V_s > \phi V_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required area of stirrups, (A_v) **</td>
<td>none</td>
<td>(500 b d)</td>
</tr>
<tr>
<td>Stirrup spacing, (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended Minimum†</td>
<td>--</td>
<td>(\frac{V_s}{f_y d})</td>
</tr>
<tr>
<td>Maximum†† (ACI 11.5.4)</td>
<td>--</td>
<td>(\frac{d}{2}) or 24 in.</td>
</tr>
</tbody>
</table>

Note: Members subjected to shear and tension only: \(V_s = \frac{f_v d_y}{2} \) with \(\phi = \frac{0.75}{(ACI 11.3.1.1)} \)

**\(A_v = 2 \times A_y \) for U stirrups; \(f_y \leq 50,000 \) (ACI 11.5.2)

††A practical limit for minimum spacing is \(d/4 \)

††Maximum spacing based on minimum shear reinforcement \((A_v f_y/500b) \) must also be considered (ACI 11.5.5.3).

Required Stirrup Reinforcement

- spacing limits

Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections
 - torque
 - remain plane
 - undistorted
 - rotates

- not true for square sections....

Shear Stress Distribution

- depend on the deformation

- \(\phi = \) angle of twist
 - measure

- can prove planar section doesn’t distort
Shearing Strain

- related to ϕ
 \[\gamma = \frac{\rho \phi}{L} \]
- ρ is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius: γ_{max} is at outer diameter

Torsional Stress - Strain

- know $f_v = \tau = G \cdot \gamma$ and $\gamma = \frac{\rho \phi}{L}$
- so $\tau = G \cdot \frac{\rho \phi}{L}$
- where G is the **Shear Modulus**

Shear Stress

- τ_{max} happens at outer diameter

- combined shear and axial stresses
 - maximum shear stress at 45° “twisted” plane
Shear Strain

• knowing \(\tau = G \cdot \frac{p \phi}{L} \) and \(\tau = \frac{T \rho}{J} \)

• solve: \(\phi = \frac{T L}{J G} \)

• composite shafts: \(\phi = \sum_i \frac{T_i L_i}{J_i G_i} \)

Noncircular Shapes

• torsion depends on \(J \)

• plane sections don’t remain plane

• \(\tau_{\text{max}} \) is still at outer diameter

\[
\tau_{\text{max}} = \frac{T}{c_1 ab^2} \quad \phi = \frac{TL}{c_2 ab^3 G}
\]

– where \(a \) is longer side (> \(b \))

Open Thin-Walled Sections

• with very large \(a/b \) ratios:

\[
\tau_{\text{max}} = \frac{T}{\frac{1}{3} ab^2} \quad \phi = \frac{TL}{\frac{1}{3} ab^3 G}
\]

Shear Flow in Closed Sections

• \(q \) is the internal shear force/unit length

\[
\tau = \frac{T}{2 ta} \quad \phi = \frac{TL}{4 ta^2} \sum_i \frac{s_i}{t_i}
\]

• \(a \) is the area bounded by the centerline

• \(s_i \) is the length segment, \(t_i \) is the thickness
Shear Flow in Open Sections

- each segment has proportion of T with respect to torsional rigidity,
 \[\tau_{\text{max}} = \frac{Tt_{\text{max}}}{\frac{1}{3} \sum b_i t_i^3} \]
- total angle of twist:
 \[\phi = \frac{TL}{\frac{1}{3} G \sum b_i t_i^3} \]
- I beams - web is thicker, so τ_{max} is in web

Torsional Shear Stress

- twisting moment
- and beam shear

Torsional Shear Reinforcement

- closed stirrups
- more longitudinal reinforcement
- area enclosed by shear flow

Development Lengths

- required to allow steel to yield (f_y)
- standard hooks
 - moment at beam end
- splices
 - lapped
 - mechanical connectors
Development Lengths

• l_d, embedment required both sides
• proper cover, spacing:
 – No. 6 or smaller
 \[l_d = \frac{d_b F_y}{25 \sqrt{f'_c}} \text{ or 12 in. minimum} \]
 – No. 7 or larger
 \[l_d = \frac{d_b F_y}{20 \sqrt{f'_c}} \text{ or 12 in. minimum} \]

Development Lengths

• hooks
 – bend and extension

Concrete Deflections

• elastic range
 – I transformed
 – E_c (with f'_c in psi)
 – normal weight concrete ($\sim 145 \text{ lb/ft}^3$)
 \[E_c = 57,000 \sqrt{f'_c} \]
 – concrete between 90 and 160 lb/ft3
 \[E_c = w_c^{1.5} 33 \sqrt{f'_c} \]
 – cracked
 – I cracked
 – E adjusted
Deflection Limits

- relate to whether or not beam supports or is attached to a damageable non-structural element
- need to check *service* live load and long term deflection against these

<table>
<thead>
<tr>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/180</td>
<td>roof systems (typical) – live</td>
</tr>
<tr>
<td>L/240</td>
<td>floor systems (typical) – live + long term</td>
</tr>
<tr>
<td>L/360</td>
<td>supporting plaster – live</td>
</tr>
<tr>
<td>L/480</td>
<td>supporting masonry – live + long term</td>
</tr>
</tbody>
</table>