concrete construction: shear & deflection

Shear in Concrete Beams
- flexure combines with shear to form diagonal cracks
- horizontal reinforcement doesn’t help
- stirrups = vertical reinforcement

ACI Shear Values
- V_u is at distance d from face of support
- shear capacity: $V_c = \nu_c \times b_w d$
 - where b_w means thickness of web at n.a.
- shear stress (beams)
 - $\nu_c = 2\sqrt{f'_c}$
 - $\phi = 0.75$ for shear
 - $\phi V_c = \phi 2\sqrt{f'_c} b_w d$ f'_c is in psi
- shear strength:
 - $V_u \leq \phi V_c + \phi V_s$
 - V_s is strength from stirrup reinforcement
Stirrup Reinforcement

- **shear capacity:**
 \[V_s = \frac{A_v f_y d}{s} \]

 - \(A_v \) = area in all legs of stirrups
 - \(s \) = spacing of stirrup

- **may need stirrups when concrete has enough strength!**

Required Stirrup Reinforcement

- **spacing limits**

<table>
<thead>
<tr>
<th>(V_s)</th>
<th>(\frac{V_s}{f_y})</th>
<th>(\frac{V_s}{f_y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>(500d)</td>
<td>(500d)</td>
</tr>
<tr>
<td>(A_v)</td>
<td>(\frac{50d}{s})</td>
<td>(\frac{50d}{s})</td>
</tr>
<tr>
<td>(V_s)</td>
<td>(\frac{50d}{s})</td>
<td>(\frac{50d}{s})</td>
</tr>
<tr>
<td>(50d)</td>
<td>(\leq 4)</td>
<td>(\leq 4)</td>
</tr>
</tbody>
</table>

Torsional Stress & Strain

- **can see torsional stresses & twisting of axi-symmetrical cross sections**

 - torque
 - remain plane
 - undistorted
 - rotates

- **not true for square sections...**

Shear Stress Distribution

- **depend on the deformation**

 - \(\phi \) = angle of twist

 - measure

 - can prove planar section doesn’t distort
Shearing Strain

- related to ϕ

$$\gamma = \frac{\rho \phi}{L}$$

- ρ is the radial distance from the centroid to the point under strain

- shear strain varies linearly along the radius: γ_{max} is at outer diameter

Torsional Stress - Strain

- know $f_v = \tau = G \cdot \gamma$ and $\gamma = \frac{\rho \phi}{L}$

- so

$$\tau = G \cdot \frac{\rho \phi}{L}$$

- where G is the Shear Modulus

Torsional Stress - Strain

- from

$$T = \sum \tau(\rho) \Delta A$$

- can derive

$$T = \frac{\tau J}{\rho}$$

- where J is the polar moment of inertia

- elastic range

$$\tau = \frac{T \rho}{J}$$

Shear Stress

- τ_{max} happens at outer diameter

- combined shear and axial stresses

- maximum shear stress at 45° “twisted” plane
Shear Strain

- knowing \(\tau = G \cdot \frac{\rho \phi}{L} \) and \(\tau = \frac{T \rho}{J} \)
- solve: \(\phi = \frac{T L}{J G} \)
- composite shafts: \(\phi = \sum \frac{T_i L_i}{J_i G_i} \)

Noncircular Shapes

- torsion depends on \(J \)
- plane sections don’t remain plane
- \(\tau_{\text{max}} \) is still at outer diameter

\[
\tau_{\text{max}} = \frac{T}{c_1 ab^2} \quad \phi = \frac{T L}{c_2 ab^3 G}
\]

- where \(a \) is longer side (> \(b \))

Open Thin-Walled Sections

- with very large \(a/b \) ratios:

\[
\tau_{\text{max}} = \frac{T}{\frac{1}{3} ab^2} \quad \phi = \frac{T L}{\frac{1}{3} ab^3 G}
\]

Shear Flow in Closed Sections

- \(q \) is the internal shear force/unit length

\[
\tau = \frac{T}{2 t a} \quad \phi = \frac{T L}{4 t a^2} \sum \frac{s_i}{t_i}
\]

- \(a \) is the area bounded by the centerline
- \(s_i \) is the length segment, \(t_i \) is the thickness
Shear Flow in Open Sections
- each segment has proportion of T with respect to torsional rigidity,
 \[\tau_{\text{max}} = \frac{T_{\text{max}} t}{\frac{1}{3} \Sigma b_i t_i^3} \]
- total angle of twist:
 \[\phi = \frac{T_L}{\frac{1}{3} G \Sigma b_i t_i^3} \]
- I beams - web is thicker, so τ_{max} is in web

Torsional Shear Stress
- twisting moment
- **and** beam shear

Torsional Shear Reinforcement
- closed stirrups
- more longitudinal reinforcement
- area enclosed by shear flow

Development Lengths
- required to allow steel to yield (f_y)
- standard hooks
 – moment at beam end
- splices
 – lapped
 – mechanical connectors
Development Lengths

- l_d, embedment required both sides
- proper cover, spacing:
 - No. 6 or smaller
 \[l_d = \frac{d_b F_y}{25 \sqrt{f'_c}} \text{ or 12 in. minimum} \]
 - No. 7 or larger
 \[l_d = \frac{d_b F_y}{20 \sqrt{f'_c}} \text{ or 12 in. minimum} \]

Concrete Deflections

- elastic range
 - I transformed
 - E_c (with f'_c in psi)
 - normal weight concrete (~ 145 lb/ft3)
 \[E_c = 57,000 \sqrt{f'_c} \]
 - concrete between 90 and 160 lb/ft3
 \[E_c = w_{c1.5} 33 \sqrt{f'_c} \]
 - cracked
 - I cracked
 - E adjusted
Deflection Limits

- relate to whether or not beam supports or is attached to a damageable non-structural element
- need to check service live load and long term deflection against these

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L/180</td>
<td>roof systems (typical) – live</td>
</tr>
<tr>
<td>L/240</td>
<td>floor systems (typical) – live + long term</td>
</tr>
<tr>
<td>L/360</td>
<td>supporting plaster – live</td>
</tr>
<tr>
<td>L/480</td>
<td>supporting masonry – live + long term</td>
</tr>
</tbody>
</table>