lecture twenty four

crossed concrete construction:
flat spanning systems

Reinforced Concrete Design

• flat plate
 – 5”-10” thick
 – simple formwork
 – lower story heights

• flat slab
 – same as plate
 – 2 ¼”-8” drop panels

Reinforced Concrete Design

• beam supported
 – slab depth ~ L/20
 – 8”–60” deep

• one-way joists
 – 3”–5” slab
 – 8”–20” stems
 – 5”-7” webs

Reinforced Concrete Design

• economical & common
• resist lateral loads
Reinforced Concrete Design

- two-way joist
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs

- beam supported slab
 - 5”-10” slabs
 - taller story heights

Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams

- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - \(w_u \) from combos
 - uniform loads with \(L/D \leq 3 \)
 - \(\ell_n \) is clear span (+M) or average of adjacent clear spans (-M)

Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - \(w_u \) from combos
 - uniform loads with \(L/D \leq 3 \)
 - \(\ell_n \) is clear span (+M) or average of adjacent clear spans (-M)
Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel

Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase
General Beam Design

- $f'_c \& f_y$ needed
- usually size just $b \& h$
 - even inches typical (forms)
 - similar joist to beam depth
 - $b:h$ of 1:1.5-1:2.5
 - $b_w \& b_f$ for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

\[S = \frac{bh^2}{6} \]

General Beam Design (cont’d)

- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing