Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f'_c

Columns Reinforcement

- columns require
 - ties or spiral reinforcement to "confine" concrete
 (#3 bars minimum)
 - minimum amount of longitudinal steel
 (#5 bars minimum: 4 with ties, 5 with spiral)

Slenderness

- effective length in monolithic with respect to stiffness of joint: $\Psi & k$
- not slender when
 \[\frac{kL_u}{r} < 22 \]
Effective Length (revisited)

- relative rotation

\[
\Psi = \frac{\sum EI}{l_b} - \frac{\sum EI}{l_c}
\]

Column Behavior

Column Design

- \(\phi_c = 0.65 \) for ties, \(\phi_c = 0.75 \) for spirals
- \(P_o \) – no bending

 \[P_o = 0.85 f'_c(A_g - A_{st}) + f_y A_{st} \]

- \(P_u \leq \phi_c P_n \)

 - ties: \(P_n = 0.8 P_o \)

 - spiral: \(P_n = 0.85 P_o \)

- nominal axial capacity:

 - presumes steel yields

 - concrete at ultimate stress

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection

\[(P - \Delta) \]
Columns with Bending

- for ultimate strength behavior, ultimate strains can’t be exceeded
 - concrete 0.003
 - steel $\frac{f_y}{E_s}$
- P reduces with M

Design Methods

- calculation intensive
 - handbook charts
 - computer programs

Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below f_y
- plot interaction diagram

Design Considerations

- bending at both ends
 - $P - \Delta$ maximum
- biaxial bending
- walls
 - unit wide columns
 - “deep” beam shear
- detailing
 - shorter development lengths
 - dowels to footings