Concrete in Compression
- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f'_c

Columns Reinforcement
- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (4 bars minimum)

Slenderness
- effective length in monolithic with respect to stiffness of joint: $\Psi & k$
- not slender when
 $$\frac{kL_u}{r} < 22$$
 *not braced
Effective Length (revisited)

- relative rotation

\[\Psi = \frac{\sum EI}{l_c} \]

Column Behavior

• eccentric loads can cause moments
• moments can change shape and induce more deflection
\[(P-\Delta) \]

Column Design

- \(\phi_c = 0.65 \) for ties, \(\phi_c = 0.75 \) for spirals
- \(P_o \) – no bending
 \[P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st} \]
- \(P_u \leq \phi_c P_n \)
 - ties: \(P_n = 0.8P_o \)
 - spiral: \(P_n = 0.85P_o \)
- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress
 \[C_t = 0.85 f'_c (A_g - A_{st}) \]

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection
 \[(P-\Delta) \]

Figure 13.3.2 Sprayed reinforced column behavior. (Courtesy of Portland Cement Association.)

Figure 13.3.3 Tied column behavior. (Courtesy of Portland Cement Association.)
Columns with Bending

- for ultimate strength behavior, ultimate strains can’t be exceeded
 - concrete 0.003
 - steel \(\frac{f_y}{E_s} \)
- \(P \) reduces with \(M \)

Design Methods

- calculation intensive
 - handbook charts
 - computer programs

Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below \(f_y \)
- plot interaction diagram

Design Considerations

- bending at both ends
 - \(P - \Delta \) maximum
- biaxial bending
- walls
 - unit wide columns
 - “deep” beam shear
- detailing
 - shorter development lengths
 - dowels to footings