Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f'_c

Slenderness

- effective length in monolithic with respect to stiffness of joint: Ψ & k
- not slender when

$$\frac{kL_u}{r} < 22$$ *not braced

Columns Reinforcement

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (4 bars minimum)
Effective Length (revisited)

- relative rotation

\[
\Psi = \frac{\sum EI}{\sum EI} \frac{l_c}{l_b}
\]

Column Behavior

Column Design

- \(\phi_c = 0.65 \) for ties, \(\phi_c = 0.75 \) for spirals
- \(P_o \) – no bending
 \[
 P_o = 0.85 f_c'(A_g - A_{st}) + f_y A_{st}
 \]
- \(P_u \leq \phi_c P_n \)
 - ties: \(P_n = 0.8P_o \)
 - spiral: \(P_n = 0.85P_o \)
- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection
 \((P-\Delta) \)
Columns with Bending

• for ultimate strength behavior, ultimate strains can’t be exceeded
 – concrete 0.003
 – steel \(\frac{f_y}{E_s} \)

• \(P \) reduces with \(M \)

Design Methods

• calculation intensive
 – handbook charts
 – computer programs

Design Considerations

• bending at both ends
 – \(P-\Delta \) maximum
• biaxial bending
• walls
 – unit wide columns
 – “deep” beam shear
• detailing
 – shorter development lengths
 – dowels to footings