Concrete Construction: Foundation Design

Foundation
- the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Structural vs. Foundation Design
- structural design
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.

- foundation design
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a = \frac{q_u}{S.F.}$

Soil Properties & Mechanics

- strength, q_a

Bearing Failure

- shear

slip zone
punched wedge

Table 1804.3

<table>
<thead>
<tr>
<th>Class of material</th>
<th>Loadbearing pressure (pounds per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crushed bedrock</td>
<td>12,000</td>
</tr>
<tr>
<td>2. Sedimentary rock</td>
<td>6,000</td>
</tr>
<tr>
<td>3. Sandy Gravel</td>
<td>5,000</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty gravel and clayey gravel</td>
<td>3,000</td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay & clayey silt</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Notes: 1. 1 psf = 47.6 Pa.
Lateral Earth Pressure

- passive vs. active

active (trying to move wall)

passive (resists movement)

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length

- other materials (piles)
 - steel
 - wood
 - composite

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

 - linear stress distribution assumed
Proportioning Footings

- **net allowable soil pressure, \(q_{\text{net}} \)**
 - \(q_{\text{net}} = q_{\text{allowable}} - h_f(\gamma_c - \gamma_s) \)
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden

- **design requirement with total unfactored load:**
 \[
 \frac{P}{A} \leq q_{\text{net}}
 \]

Concrete Spread Footings

- **failure modes**
 - shear
 - bending

Concrete Spread Footings

- **shear failure**
 - one way shear
 - two way shear

- **plain or reinforced**
- **ACI specifications**
- **\(P_u \) = combination of factored \(D, L, W \)**
- **ultimate strength**
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - plain concrete has shear strength
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure
Over and Under-reinforcement

- **reinforcement ratio for bending**
 - \(\rho = \frac{A_s}{bd} \)
 - use as a design estimate to find \(A_s, b, d \)
 - max \(\rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)
 - minimum for slabs & footings of uniform thickness

\[
\frac{A_s}{bh} = 0.002 \quad \text{grade 40/50 bars} \quad \frac{A_s}{bh} = 0.0018 \quad \text{grade 60 bars}
\]

Reinforcement Length

- **need length, \(\ell_d \)**
 - bond
 - development of yield strength

Column Connection

- **bearing of column on footing**
 - \(P_u \leq \phi P_n = \phi (0.85 f'_c A_1) \)
 - \(\phi = 0.65 \) for bearing
 - confined: increase \(x \)

- **dowel reinforcement**
 - if \(P_u > P_b \), need compression reinforcement
 - min of 4 - #5 bars (or 15 metric)

Wall Footings

- continuous strip for load bearing walls
 - plain or reinforced
 - behavior
 - wide beam shear
 - bending of projection
 - dimensions usually dictated by codes for residential walls
 - light loads
Eccentrically Loaded Footings

• footings subject to moments

\[P \]

– soil pressure resultant force may not coincide with the centroid of the footing

by statics:

\[M = Pe \]

Differential Soil Pressure

– to avoid large rotations, limit the differential soil pressure across footing

– for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Kern Limit

• boundary of \(\epsilon \) for no tensile stress

• triangular stress block with \(p_{\text{max}} \)

\[\text{volume} = \frac{wpx}{2} = N \]

\[p_{\text{max}} = \frac{2N}{wx} \]

Guidelines

– want resultant of load from pressure inside the middle third of base (kern)

• ensures stability with respect to overturning

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5 \]

– pressure under toe (maximum) \(\leq q_a \)

– shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line
- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid
- strap or cantilever
 - prevents overturning of exterior column
- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_a \]

\[R = P_1 + P_2 \]

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key
Retaining Walls

• considerations
 – overturning
 – settlement
 – allowable bearing pressure
 – sliding
 – (adequate drainage)

Retaining Walls

• procedure
 – proportion and check stability with working loads for bearing, overturning and sliding
 – design structure with factored loads

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2 \]

\[SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2 \]

Retaining Walls Forces

• design like cantilever beam
 – \(V_u \) & \(M_u \) for reinforced concrete
 – \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 – \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure
Retaining Wall Types

- **“gravity” wall**
 - usually unreinforced
 - economical & simple

- **cantilever retaining wall**
 - common

Deep Foundations

- **usage**
 - when spread footings, mats won’t work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations

Retaining Wall Types

- **counterfort wall**
 - very tall walls (> 20 - 25 ft)

- **buttress wall**

- **bridge abutment**

- **basement frame wall (large basement areas)**

Deep Foundation Types

- **piles** - usually driven, 6”-8” \(\phi \), 5’ +
 - **piers**
 - **caissons**
 - **drilled shafts**
 - **bored piles**
 - **pressure injected piles**

 drilled, excavated, concreted (with or without steel)

 2.5’ - 10’/12’ \(\phi \)
Deep Foundation Types

- classification
 - by material
 - by shape
 - by function (structural, compaction...)
- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Deep Foundations

- classification
 - by material
 - by shape
 - by function (structural, compaction...)
- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)
- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- **end bearing pile (point bearing)**
 - soft or loose layer
 - "socketed"
 - for use in soft or loose materials over a dense base
 - \[P_a = A_p \cdot f_a \]

- **friction piles (floating)**
 - common in both clay & sand
 - tapered: sand & silt
 - \[R_s = f(\text{adhesion}) \]
 - \[R_p \approx 0 \]

Piles Classified By Function

- **combination friction and end bearing**
- **uplift/tension piles**
 - structures that float, towers
 - \[R_p \]
 - \[R_s = f(\text{adhesion}) \]

- **batter piles**
 - angled, cost more, resist large horizontal loads
 - 1:12 to 1:3 or 1:4 angled

Piles Classified By Function

- **fender piles, dolphins, pile clusters**
 - large # of piles in a small area

- **compaction piles**
 - used to densify loose sands

- **drilled piers**
 - eliminate need for pile caps
 - designed for bearing capacity (not slender)

Pile Caps and Grade Beams

- **like multiple column footing**
- **more shear areas to consider**