Elements of Architectural Structures: Form, Behavior, and Design
ARCH 614
Dr. Anne Nichols
Spring 2015
lecture
twenty six

Concrete construction: foundation design

Foundation
- the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Structural vs. Foundation Design
- structural design
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.

Structural vs. Foundation Design
- foundation design
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
 - allowable bearing capacity, $q_a = \frac{q_u}{S.F.}$

Soil Properties & Mechanics

- strength, q_a

Bearing Failure

- shear

Table 1804.3

<table>
<thead>
<tr>
<th>Class of material</th>
<th>Loadbearing pressure (pounds per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Graystone bedrock</td>
<td>12,000</td>
</tr>
<tr>
<td>2. Sedimentary rock</td>
<td>5,000</td>
</tr>
<tr>
<td>3. Sandy gravel</td>
<td>5,000</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty gravel and clayey gravel</td>
<td>3,000</td>
</tr>
<tr>
<td>5. Clay, sandy silty, silty clayey & silty clayey</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Figure 2.5

Presumptive bearing values of various soils, as given in the BOCA National Building Code, 1996. (Reproduced by permission)
Lateral Earth Pressure

- passive vs. active

![Diagram showing active and passive lateral earth pressure](image)

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length
- other materials (piles)
 - steel
 - wood
 - composite

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

- linear stress distribution assumed
Proportioning Footings

- net allowable soil pressure, \(q_{net} \)
 - \(q_{net} = q_{allowable} - h_f (\gamma_c - \gamma_s) \)
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden

- design requirement with total unfactored load:
 \[
 \frac{P}{A} \leq q_{net}
 \]

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- \(P_u = \) combination of factored \(D, L, W \)
- ultimate strength
 - \(V_u \leq \phi V_c: \phi = 0.75 \) for shear
 - \(M_u \leq \phi M_n: \phi = 0.9 \) for flexure

Concrete Spread Footings

- failure modes
 - shear failure
 - bending
 - one way shear
 - two way shear
Over and Under-reinforcement

- reinforcement ratio for bending
 \[\rho = \frac{A_s}{bd} \]
 - use as a design estimate to find \(A_s, b, d \)
 - max \(\rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)
 - minimum for slabs & footings of uniform thickness
 \[\frac{A_s}{bh} = 0.002 \text{ grade } 40/50 \text{ bars} \]
 \[= 0.0018 \text{ grade } 60 \text{ bars} \]

Column Connection

- bearing of column on footing
 \[P_u < \phi P_n = \phi (0.85 f' c A_k) \]
 \(\phi = 0.65 \) for bearing
 - confined: increase \(x \)
 \[\sqrt{\frac{A_2}{A_1}} \leq 2 \]
- dowel reinforcement
 - if \(P_u > P_{br} \) need compression reinforcement
 - min of 4 - #5 bars (or 15 metric)

Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads

Reinforcement Length

- need length, \(\ell_d \)
 - bond
 - development of yield strength
Eccentrically Loaded Footings

- footings subject to moments

\[P \]

by statics:

\[M = Pe \]

- soil pressure resultant force may not coincide with the centroid of the footing

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing

- for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Kern Limit

- boundary of \(e \) for no tensile stress

- triangular stress block with \(p_{\text{max}} \)

\[\text{volume} = \frac{wp x}{2} = N \]

\[p_{\text{max}} = \frac{2N}{wx} \]

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)
 - ensures stability with respect to overturning

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5 \]

- pressure under toe (maximum) \(\leq q_a \)

- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line

- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid

- strap or cantilever
 - prevents overturning of exterior column

- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_a \]

\[R = P_1 + P_2 \]

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
- additional parts
 - counterfort
 - buttress
 - key
Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

Retaining Wall Proportioning

- estimate size
 - footing size, $B \approx 2/5 - 2/3$ wall height (H)
 - footing thickness $\approx 1/12 - 1/8$ footing size (B)
 - base of stem $\approx 1/10 - 1/12$ wall height ($H+h_f$)
 - top of stem $\geq 12''$

Retaining Walls

- procedure
 - proportion and check stability with working loads for bearing, overturning and sliding
 - design structure with factored loads
 - $SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2$
 - $SF = \frac{F_{\text{horizontal_resist}}}{F_{\text{sliding}}} \geq 1.25 - 2$

Retaining Walls Forces

- design like cantilever beam
 - V_u & M_u for reinforced concrete
 - $V_u \leq \phi V_c : \phi = 0.75$ for shear
 - $M_u \leq \phi M_n : \phi = 0.9$ for flexure
Retaining Wall Types

- "gravity" wall
 - usually unreinforced
 - economical & simple

- cantilever retaining wall
 - common

Retaining Wall Types

- counterfort wall
 - very tall walls (> 20 - 25 ft)
- buttress wall
- bridge abutment
- basement frame wall (large basement areas)

Deep Foundations

- usage
 - when spread footings, mats won’t work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations

Deep Foundation Types

- piles - usually driven, 6”-8” φ, 5’ +
- piers
- caissons
- drilled shafts
- bored piles
- pressure injected piles
Deep Foundation Types

- classification
 - by material
 - by shape
 - by function (structural, compaction...)

- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)

- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- **end bearing pile (point bearing)**

 ![Diagram](image)

 \[P_a = A_p \cdot f_a \]

 for use in soft or loose materials over a dense base

- **friction piles (floating)**

 ![Diagram](image)

 \[R_s = f(\text{adhesion}) \]
 \[R_p \approx 0 \]

 common in both clay & sand

- **socketed**

 soft or loose layer

Piles Classified By Function

- **combination friction and end bearing**

- **uplift/tension piles**

 ![Diagram](image)

 structures that float, towers

- **batter piles**

 ![Diagram](image)

 angled, cost more, resist large horizontal loads

 \[P \]
 \[R_s \]
 \[R_p \]

 1:12 to 1:3 or 1:4

Piles Classified By Function

- **fender piles, dolphins, pile clusters**

 ![Diagram](image)

 large # of piles in a small area

- **compaction piles**

 - used to densify loose sands

- **drilled piers**

 - eliminate need for pile caps

 - designed for bearing capacity (not slender)

Pile Caps and Grade Beams

- **like multiple column footing**

- **more shear areas to consider**

 ![Diagram](image)